4 research outputs found

    Learning to Learn with Variational Information Bottleneck for Domain Generalization

    Get PDF
    Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift. In this paper, we address both problems. We introduce a probabilistic meta-learning model for domain generalization, in which classifier parameters shared across domains are modeled as distributions. This enables better handling of prediction uncertainty on unseen domains. To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB. MetaVIB is derived from novel variational bounds of mutual information, by leveraging the meta-learning setting of domain generalization. Through episodic training, MetaVIB learns to gradually narrow domain gaps to establish domain-invariant representations, while simultaneously maximizing prediction accuracy. We conduct experiments on three benchmarks for cross-domain visual recognition. Comprehensive ablation studies validate the benefits of MetaVIB for domain generalization. The comparison results demonstrate our method outperforms previous approaches consistently.Comment: 15 pages, 4 figures, ECCV202

    Discovering Latent Domains for Unsupervised Domain Adaptation Through Consistency

    No full text
    In recent years, great advances in Domain Adaptation (DA) have been possible through deep neural networks. While this is true even for multi-source scenarios, most of the methods are based on the assumption that the domain to which each sample belongs is known a priori. However, in practice, we might have a source domain composed by a mixture of multiple sub-domains, without any prior about the sub-domain to which each source sample belongs. In this case, while multi-source DA methods are not applicable, restoring to single-source ones may lead to sub-optimal results. In this work, we explore a recent direction in deep domain adaptation: automatically discovering latent domains in visual datasets. Previous works address this problem by using a domain prediction branch, trained with an entropy loss. Here we present a novel formulation for training the domain prediction branch which exploits (i) domain prediction output for various perturbations of the input features and (ii) the min-entropy consensus loss, which forces the predictions of the perturbation to be both consistent and with low entropy. We compare our approach to the previous state-of-the-art on publicly-available datasets, showing the effectiveness of our method both quantitatively and qualitatively
    corecore