57 research outputs found
Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats
Insider threat detection is an emergent concern for academia, industries, and governments due to the growing number of insider incidents in recent years. The continuous streaming of unbounded data coming from various sources in an organisation, typically in a high velocity, leads to a typical Big Data computational problem. The malicious insider threat refers to anomalous behaviour(s) (outliers) that deviate from the normal baseline of a data stream. The absence of previously logged activities executed by users shapes the insider threat detection mechanism into an unsupervised anomaly detection approach over a data stream. A common shortcoming in the existing data mining approaches to detect insider threats is the high number of false alarms/positives (FPs). To handle the Big Data issue and to address the shortcoming, we propose a streaming anomaly detection approach, namely Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat detection. E-RAIDS learns an ensemble of p established outlier detection techniques [Micro-cluster-based Continuous Outlier Detection (MCOD) or Anytime Outlier Detection (AnyOut)] which employ clustering over continuous data streams. Each model of the p models learns from a random feature subspace to detect local outliers, which might not be detected over the whole feature space. E-RAIDS introduces an aggregate component that combines the results from the p feature subspaces, in order to confirm whether to generate an alarm at each window iteration. The merit of E-RAIDS is that it defines a survival factor and a vote factor to address the shortcoming of high number of FPs. Experiments on E-RAIDS-MCOD and E-RAIDS-AnyOut are carried out, on synthetic data sets including malicious insider threat scenarios generated at Carnegie Mellon University, to test the effectiveness of voting feature subspaces, and the capability to detect (more than one)-behaviour-all-threat in real-time. The results show that E-RAIDS-MCOD reports the highest F1 measure and less number of false alarm = 0 compared to E-RAIDS-AnyOut, as well as it attains to detect approximately all the insider threats in real-time
Instance reduction for one-class classification
Instance reduction techniques are data preprocessing methods originally developed to enhance the nearest neighbor rule for standard classification. They reduce the training data by selecting or generating representative examples of a given problem. These algorithms have been designed and widely analyzed in multi-class problems providing very competitive results. However, this issue was rarely addressed in the context of one-class classification. In this specific domain a reduction of the training set may not only decrease the classification time and classifier’s complexity, but also allows us to handle internal noisy data and simplify the data description boundary. We propose two methods for achieving this goal. The first one is a flexible framework that adjusts any instance reduction method to one-class scenario by introduction of meaningful artificial outliers. The second one is a novel modification of evolutionary instance reduction technique that is based on differential evolution and uses consistency measure for model evaluation in filter or wrapper modes. It is a powerful native one-class solution that does not require an access to counterexamples. Both of the proposed algorithms can be applied to any type of one-class classifier. On the basis of extensive computational experiments, we show that the proposed methods are highly efficient techniques to reduce the complexity and improve the classification performance in one-class scenarios
Tanzi's contribution to modern neuroscience
In 1893 Eugenio Tanzi formulated his hypotheses on the relationship between neural mechanisms and cognition, in particular on the neural basis of learning. His paper was mentioned by some authors, but the contents have never been credited their full importance. A synopsis of Tanzi's ideas is given, especially his ''minimal interneuronic distance'' hypothesis, and they are discussed in relation to modern psychobiology and connectionism
Tanzi's contribution to modern neuroscience
In 1893 Eugenio Tanzi formulated his hypotheses on the relationship between neural mechanisms and cognition, in particular on the neural basis of learning. His paper was mentioned by some authors, but the contents have never been credited their full importance. A synopsis of Tanzi's ideas is given, especially his ''minimal interneuronic distance'' hypothesis, and they are discussed in relation to modern psychobiology and connectionism
- …