151 research outputs found
Why is soluble intercellular adhesion molecule-1 related to cardiovascular mortality?
Background: Increased plasma levels of soluble adhesion molecules are associated with an increased risk of atherothrombosis. The pathophysiological mechanisms responsible for these associations are not known. The aim of the present study was to investigate the association of soluble intercellular adhesion molecule-1 (sICAM-1) concentration and risk of cardiovascular and all-cause mortality among individuals with and without type 2 diabetes. In addition, we assessed potential pathophysiological mechanisms by which sICAM-1 may promote mortality. Materials and methods: Six hundred and thirty-one subjects taken from a general population of the middle-aged and elderly participated in this prospective cohort study. Baseline data collection was performed from 1989 to 1992; subjects were followed until 1 January 2000. Results: Subjects who died had higher levels of sICAM-1 than those who survived (506(164) vs. 477(162) ng m
Impact of social ties on self reported health in France: Is everyone affected equally?
<p>Abstract</p> <p>Aim</p> <p>To examine the association of social ties and income with self reported health, in order to investigate if social ties have a greater impact on the health of people on low incomes compared to those financially better off.</p> <p>Methods</p> <p>A nationally representative cross-sectional study of 5205 French adults using data from questionnaires which asked about health, income and relationships with family and friends etc.</p> <p>Results</p> <p>Less than good self-rated health (SRH) is twice as frequently reported by people in the lowest income group than those in the highest income group. People with low incomes are also more likely to have felt alone on the previous day, received no phone call during the last week, have no friends, not be a member of a club, and to live alone. Socially isolated people report lower SRH. Likelihood ratio tests for interaction vs. main effect models were statistically significant for 2 of the measures of social ties, borderline for 2 others and non-significant for one. For 4 of the 5 indicators of social ties, larger odd ratios show that social isolation is more strongly associated with less than good SRH among people on low incomes compared to those with a higher income.</p> <p>Conclusion</p> <p>Social isolation is associated with 'less than good' self-rated health. This effect appears to be more important for people on a low income.</p
Sustained Release of Multiple Growth Factors from Injectable Polymeric System as a Novel Therapeutic Approach Towards Angiogenesis
The aim was to investigate that a bio-degradable alginate and poly lactide-co-glycolide (PLG) system capable of delivering growth factors sequentially would be superior to single growth factor delivery in promoting neovascularization and improving perfusion
Microparticles Carrying Sonic Hedgehog Favor Neovascularization through the Activation of Nitric Oxide Pathway in Mice
BACKGROUND: Microparticles (MPs) are vesicles released from plasma membrane upon cell activation and during apoptosis. Human T lymphocytes undergoing activation and apoptosis generate MPs bearing morphogen Shh (MPs(Shh+)) that are able to regulate in vitro angiogenesis.METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigated the ability of MPs(Shh+) to modulate neovascularization in a model of mouse hind limb ischemia. Mice were treated in vivo for 21 days with vehicle, MPs(Shh+), MPs(Shh+) plus cyclopamine or cyclopamine alone, an inhibitor of Shh signalling. Laser doppler analysis revealed that the recovery of the blood flow was 1.4 fold higher in MPs(Shh+)-treated mice than in controls, and this was associated with an activation of Shh pathway in muscles and an increase in NO production in both aorta and muscles. MPs(Shh+)-mediated effects on flow recovery and NO production were completely prevented when Shh signalling was inhibited by cyclopamine. In aorta, MPs(Shh+) increased activation of eNOS/Akt pathway, and VEGF expression, being inhibited by cyclopamine. By contrast, in muscles, MPs(Shh+) enhanced eNOS expression and phosphorylation and decreased caveolin-1 expression, but cyclopamine prevented only the effects of MPs(Shh+) on eNOS pathway. Quantitative RT-PCR revealed that MPs(Shh+) treatment increased FGF5, FGF2, VEGF A and C mRNA levels and decreased those of α5-integrin, FLT-4, HGF, IGF-1, KDR, MCP-1, MT1-MMP, MMP-2, TGFβ1, TGFβ2, TSP-1 and VCAM-1, in ischemic muscles. CONCLUSIONS/SIGNIFICANCE: These findings suggest that MPs(Shh+) may contribute to reparative neovascularization after ischemic injury by regulating NO pathway and genes involved in angiogenesis
Comparative Angiogenic Activities of Induced Pluripotent Stem Cells Derived from Young and Old Mice
Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1+) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1+ cells were sorted and shown to differentiate into VE-cadherin+ endothelial cells and α-SMA+ smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1+ cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1+ cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1+ cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1+ cells from young or old mice. Transplantation of Flk-1+ cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1+ cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging
Combined Transfer of Human VEGF165 and HGF Genes Renders Potent Angiogenic Effect in Ischemic Skeletal Muscle
Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of “single-gene” administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders
IQGAP1 Is Involved in Post-Ischemic Neovascularization by Regulating Angiogenesis and Macrophage Infiltration
Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS). IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF)-induced ROS production and migration of cultured endothelial cells (ECs); however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+) macrophages and CD31(+) capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/-) mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM)-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/-) mice. In vitro, IQGAP1(-/-) BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/-) mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases
Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice
International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia
‘In vivo’ optical approaches to angiogenesis imaging
In recent years, molecular imaging gained significant importance in biomedical research. Optical imaging developed into a modality which enables the visualization and quantification of all kinds of cellular processes and cancerous cell growth in small animals. Novel gene reporter mice and cell lines and the development of targeted and cleavable fluorescent “smart” probes form a powerful imaging toolbox. The development of systems collecting tomographic bioluminescence and fluorescence data enabled even more spatial accuracy and more quantitative measurements. Here we describe various bioluminescent and fluorescent gene reporter models and probes that can be used to specifically image and quantify neovascularization or the angiogenic process itself
- …