78 research outputs found

    Desmoplastic small round cell tumor: impact of 18F-FDG PET induced treatment strategy in a patient with long-term outcome

    Get PDF
    The desmoplastic small round cell tumor (DSRCT) is an uncommon and highly aggressive cancer. The role of 18F-FDG PET in management of DSRCT is little reported. We report a case of metastasized abdominal DSRCT detected in a 43-year old patient whose diagnostic and therapeutic approaches were influenced by 18F-FDG PET-CT. The patient is still alive ten years after diagnosis. 18F-FDG PET-CT seems to be a useful method for assessing therapeutic efficiency and detecting early recurrences even in rare malignancies such as DSRCT

    Mre11-Rad50 Promotes Rapid Repair of DNA Damage in the Polyploid Archaeon Haloferax volcanii by Restraining Homologous Recombination

    Get PDF
    Polyploidy is frequent in nature and is a hallmark of cancer cells, but little is known about the strategy of DNA repair in polyploid organisms. We have studied DNA repair in the polyploid archaeon Haloferax volcanii, which contains up to 20 genome copies. We have focused on the role of Mre11 and Rad50 proteins, which are found in all domains of life and which form a complex that binds to and coordinates the repair of DNA double-strand breaks (DSBs). Surprisingly, mre11 rad50 mutants are more resistant to DNA damage than the wild-type. However, wild-type cells recover faster from DNA damage, and pulsed-field gel electrophoresis shows that DNA double-strand breaks are repaired more slowly in mre11 rad50 mutants. Using a plasmid repair assay, we show that wild-type and mre11 rad50 cells use different strategies of DSB repair. In the wild-type, Mre11-Rad50 appears to prevent the repair of DSBs by homologous recombination (HR), allowing microhomology-mediated end-joining to act as the primary repair pathway. However, genetic analysis of recombination-defective radA mutants suggests that DNA repair in wild-type cells ultimately requires HR, therefore Mre11-Rad50 merely delays this mode of repair. In polyploid organisms, DSB repair by HR is potentially hazardous, since each DNA end will have multiple partners. We show that in the polyploid archaeon H. volcanii the repair of DSBs by HR is restrained by Mre11-Rad50. The unrestrained use of HR in mre11 rad50 mutants enhances cell survival but leads to slow recovery from DNA damage, presumably due to difficulties in the resolution of DNA repair intermediates. Our results suggest that recombination might be similarly repressed in other polyploid organisms and at repetitive sequences in haploid and diploid species

    The divergent eukaryote Trichomonas vaginalis has an m7G cap methyltransferase capable of a single N2 methylation

    Get PDF
    Eukaryotic RNAs typically contain 5′ cap structures that have been primarily studied in yeast and metazoa. The only known RNA cap structure in unicellular protists is the unusual Cap4 on Trypanosoma brucei mRNAs. We have found that T. vaginalis mRNAs are protected by a 5′ cap structure, however, contrary to that typical for eukaryotes, T. vaginalis spliceosomal snRNAs lack a cap and may contain 5′ monophophates. The distinctive 2,2,7-trimethylguanosine (TMG) cap structure usually found on snRNAs and snoRNAs is produced by hypermethylation of an m7G cap catalyzed by the enzyme trimethylguanosine synthase (Tgs). Here, we biochemically characterize the single T. vaginalis Tgs (TvTgs) encoded in its genome and demonstrate that TvTgs exhibits substrate specificity and amino acid requirements typical of an RNA cap-specific, m7G-dependent N2 methyltransferase. However, recombinant TvTgs is capable of catalysing only a single round of N2 methylation forming a 2,7-dimethylguanosine cap (DMG) as observed previously for Giardia lamblia. In contrast, recombinant Entamoeba histolytica and Trypanosoma brucei Tgs are capable of catalysing the formation of a TMG cap. These data suggest the presence of RNAs with a distinctive 5′ DMG cap in Trichomonas and Giardia lineages that are absent in other protist lineages

    Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Get PDF
    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease
    corecore