9 research outputs found

    Effect of Water Blocking Damage on Flow Efficiency and Productivity in Tight Gas Reservoirs

    No full text
    Tight gas reservoirs normally have production problems due to very low matrix permeability and significant damage during well drilling, completion, stimulation and production. Therefore, they might not flow gas at optimum rates without advanced production improvement techniques. The main damage mechanisms and the factors that have significant influence on total skin factor in tight gas reservoirs include mechanical damage to formation rock, water blocking, relative permeability reduction around wellbore as a result of filtrate invasion and liquid leak-off into the formation during fracturing operations. Drilling and fracturing fluids invasion mostly occurs through permeable zones or natural fractures and might also lead to serious permeability reduction in the rock matrix that surrounds the wellbore, natural fractures, or hydraulic fracture wings.This study represents evaluation of water blocking damage in tight gas formations, and the influence on core flow efficiency and well productivity. Core scale reservoir simulations were carried out based on a typical Western Australia tight gas reservoir in order to numerically model liquid invasion during overbalanced, balanced and underbalanced drilling, and the effect on gas production in clean-up period. The simulation results describe how water blocking reduces near wellbore permeability and affects well productivity and gas recovery from tight gas reservoirs

    Comparative Biology of IncQ and IncQ-Like Plasmids

    No full text
    Plasmids belonging to Escherichia coli incompatibility group Q are relatively small (approximately 5 to 15 kb) and able to replicate in a remarkably broad range of bacterial hosts. These include gram-positive bacteria such as Brevibacterium and Mycobacterium and gram-negative bacteria such as Agrobacterium, Desulfovibrio, and cyanobacteria. These plasmids are mobilized by several self-transmissible plasmids into an even more diverse range of organisms including yeasts, plants, and animal cells. IncQ plasmids are thus highly promiscuous. Recently, several IncQ-like plasmids have been isolated from bacteria found in environments as diverse as piggery manure and highly acidic commercial mineral biooxidation plants. These IncQ-like plasmids belong to different incompatibility groups but have similar broad-host-range replicons and mobilization properties to the IncQ plasmids. This review covers the ecology, classification, and evolution of IncQ and IncQ-like plasmids
    corecore