1,466 research outputs found

    Characterizing Dust Attenuation in Local Star-Forming Galaxies: Near-Infrared Reddening and Normalization

    Get PDF
    We characterize the near-infrared (NIR) dust attenuation for a sample of ~5500 local (z<0.1) star-forming galaxies and obtain an estimate of their average total-to-selective attenuation k(λ)k(\lambda). We utilize data from the United Kingdom Infrared Telescope (UKIRT) and the Two Micron All-Sky Survey (2MASS), which is combined with previously measured UV-optical data for these galaxies. The average attenuation curve is slightly lower in the far-UV than local starburst galaxies, by roughly 15%, but appears similar at longer wavelengths with a total-to-selective normalization at V-band of RV=3.67+0.440.35R_V=3.67\substack{+0.44 \\ -0.35}. Under the assumption of energy balance, the total attenuated energy inferred from this curve is found to be broadly consistent with the observed infrared dust emission (LTIRL_{\rm{TIR}}) in a small sample of local galaxies for which far-IR measurements are available. However, the significant scatter in this quantity among the sample may reflect large variations in the attenuation properties of individual galaxies. We also derive the attenuation curve for sub-populations of the main sample, separated according to mean stellar population age (via Dn4000D_n4000), specific star formation rate, stellar mass, and metallicity, and find that they show only tentative trends with low significance, at least over the range which is probed by our sample. These results indicate that a single curve is reasonable for applications seeking to broadly characterize large samples of galaxies in the local Universe, while applications to individual galaxies would yield large uncertainties and is not recommended.Comment: 14 pages, 10 figures, 1 table. Accepted for publication in Ap

    Mass-Richness relations for X-ray and SZE-selected clusters at 0.4<z<2.00.4 < z <2.0 as seen by SpitzerSpitzer at 4.5μ\mum

    Get PDF
    We study the mass-richness relation of 116 spectroscopically-confirmed massive clusters at 0.4<z<20.4 < z < 2 by mining the SpitzerSpitzer archive. We homogeneously measure the richness at 4.5μ\mum for our cluster sample within a fixed aperture of 22^{\prime} radius and above a fixed brightness threshold, making appropriate corrections for both background galaxies and foreground stars. We have two subsamples, those which have a) literature X-ray luminosities and b) literature Sunyaev-Zeldovich effect masses. For the X-ray subsample we re-derive masses adopting the most recent calibrations. We then calibrate an empirical mass-richness relation for the combined sample spanning more than one decade in cluster mass and find the associated uncertainties in mass at fixed richness to be ±0.25\pm 0.25 dex. We study the dependance of the scatter of this relation with galaxy concentration, defined as the ratio between richness measured within an aperture radius of 1 and 2 arcminutes. We find that at fixed aperture radius the scatter increases for clusters with higher concentrations. We study the dependance of our richness estimates with depth of the [4.5]μ\mum imaging data and find that reaching a depth of at least [4.5]= 21 AB mag is sufficient to derive reasonable mass estimates. We discuss the possible extension of our method to the mid-infrared WISEWISE all-sky survey data, and the application of our results to the EuclidEuclid mission. This technique makes richness-based cluster mass estimates available for large samples of clusters at very low observational cost.Comment: Submitted to ApJ on Aug 31 2016, Revised version resubmitted on Apr 11th 201

    Spitzer Observations of Gamma-Ray Burst Host Galaxies: A Unique Window into High Redshift Chemical Evolution and Star-formation

    Get PDF
    We present deep Spitzer 3.6 micron observations of three z~5 GRB host galaxies. Our observations reveal that z~5 GRB hosts are a factor of 3 less luminous than the median rest-frame V-band luminosity of spectroscopically confirmed z~5 galaxies in the GOODS fields and the UDF. The strong connection between GRBs and massive star formation implies that not all star-forming galaxies at these redshifts are currently being accounted for in deep surveys and GRBs provide a unique way to measure the contribution to the star-formation rate density from galaxies at the faint end of the galaxy luminosity function. By correlating the co-moving star-formation rate density with co-moving GRB rates at lower redshifts, we estimate a lower limit to the star-formation rate density of 0.12+/-0.09 and 0.09+/-0.05 M_sun/yr/Mpc^3 at z~4.5 and z~6, respectively. Finally, we provide evidence that the average metallicity of star-forming galaxies evolves as (stellar mass density)^(0.69+/-0.17) between z5z\sim5 and z0z\sim0, probably indicative of the loss of a significant fraction of metals to the intergalactic medium, particularly in low-mass galaxies.Comment: ApJ, in pres

    The Hawk-I UDS and GOODS Survey (HUGS): Survey design and deep K-band number counts

    Get PDF
    We present the results of a new, ultra-deep, near-infrared imaging survey executed with the Hawk-I imager at the ESO VLT, of which we make all the data (images and catalog) public. This survey, named HUGS (Hawk-I UDS and GOODS Survey), provides deep, high-quality imaging in the K and Y bands over the portions of the UKIDSS UDS and GOODS-South fields covered by the CANDELS HST WFC3/IR survey. In this paper we describe the survey strategy, the observational campaign, the data reduction process, and the data quality. We show that, thanks to exquisite image quality and extremely long exposure times, HUGS delivers the deepest K-band images ever collected over areas of cosmological interest, and in general ideally complements the CANDELS data set in terms of image quality and depth. In the GOODS-S field, the K-band observations cover the whole CANDELS area with a complex geometry made of 6 different, partly overlapping pointings, in order to best match the deep and wide areas of CANDELS imaging. In the deepest region (which includes most of the Hubble Ultra Deep Field) exposure times exceed 80 hours of integration, yielding a 1 − σ magnitude limit per square arcsec of ≃28.0 AB mag. The seeing is exceptional and homogeneous across the various pointings, confined to the range 0.38–0.43 arcsec. In the UDS field the survey is about one magnitude shallower (to match the correspondingly shallower depth of the CANDELS images) but includes also Y-band band imaging (which, in the UDS, was not provided by the CANDELS WFC3/IR imaging). In the K-band, with an average exposure time of 13 hours, and seeing in the range 0.37–0.43 arcsec, the 1 − σ limit per square arcsec in the UDS imaging is ≃27.3 AB mag. In the Y-band, with an average exposure time ≃8 h, and seeing in the range 0.45–0.5 arcsec, the imaging yields a 1 − σ limit per square arcsec of ≃28.3 AB mag. We show that the HUGS observations are well matched to the depth of the CANDELS WFC3/IR data, since the majority of even the faintest galaxies detected in the CANDELS H-band images are also detected in HUGS. Finally we present the K-band galaxy number counts produced by combining the HUGS data from the two fields. We show that the slope of the number counts depends sensitively on the assumed distribution of galaxy sizes, with potential impact on the estimated extra-galactic background light

    E S R and Optical Absorption Studies on Two Copper (II) Schiff-Base Complexes in Solutions

    Get PDF

    Characterizing Dust Attenuation in Local Star-forming Galaxies: UV and Optical Reddening

    Get PDF
    The dust attenuation for a sample of ~10,000 local (z ≾ 0.1) star-forming galaxies is constrained as a function of their physical properties. We utilize aperture-matched multiwavelength data available from the Galaxy Evolution Explorer and the Sloan Digital Sky Survey to ensure that regions of comparable size in each galaxy are being analyzed. We follow the method of Calzetti et al. and characterize the dust attenuation through the UV power-law index, β, and the dust optical depth, which is quantified using the difference in Balmer emission line optical depth, τ^1_ β = τ_(Hβ) – τ_(Hα). The observed linear relationship between β and τ^1_ β is similar to the local starburst relation, but the large scatter (σ_(int) = 0.44) suggests that there is significant variation in the local universe. We derive a selective attenuation curve over the range 1250 Å < λ < 8320 Å and find that a single attenuation curve is effective for characterizing the majority of galaxies in our sample. This curve has a slightly lower selective attenuation in the UV compared to previously determined curves. We do not see evidence to suggest that a 2175 Å feature is significant in the average attenuation curve. Significant positive correlations are seen between the amount of UV and optical reddening and galaxy metallicity, mass, star formation rate (SFR), and SFR surface density. This provides a potential tool for gauging attenuation where the stellar population is unresolved, such as at high z
    corecore