97 research outputs found

    Anderson localization for electric quantum walks and skew-shift CMV matrices

    Full text link
    We consider the spectral and dynamical properties of one-dimensional quantum walks placed into homogenous electric fields according to a discrete version of the minimal coupling principle. We show that for all irrational fields the absolutely continuous spectrum of these systems is empty, and prove Anderson localization for almost all (irrational) fields. This result closes a gap which was left open in the original study of electric quantum walks: a spectral and dynamical characterization of these systems for typical fields. Additionally, we derive an analytic and explicit expression for the Lyapunov exponent of this model. Making use of a connection between quantum walks and CMV matrices our result implies Anderson localization for CMV matrices with a particular choice of skew-shift Verblunsky coefficients as well as for quasi-periodic unitary band matrices.Comment: 18 pages, 2 figure

    Propagation and spectral properties of quantum walks in electric fields

    Get PDF
    We study one-dimensional quantum walks in a homogeneous electric field. The field is given by a phase which depends linearly on position and is applied after each step. The long time propagation properties of this system, such as revivals, ballistic expansion and Anderson localization, depend very sensitively on the value of the electric field Φ\Phi, e.g., on whether Φ/(2π)\Phi/(2\pi) is rational or irrational. We relate these properties to the continued fraction expansion of the field. When the field is given only with finite accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time scales.Comment: 7 pages, 4 figure

    The topological classification of one-dimensional symmetric quantum walks

    Full text link
    We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behaviour far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translationally invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at 11 or 1-1 (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.Comment: 36 pages, 7 figure

    Quantum Walks with Non-Orthogonal Position States

    Get PDF
    Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.Comment: 5 pages, 4 figure

    Chiral Floquet systems and quantum walks at half period

    Full text link
    We classify periodically driven quantum systems on a one-dimensional lattice, where the driving process is local and subject to a chiral symmetry condition. The analysis is in terms of the unitary operator at a half-period and also covers systems in which this operator is implemented directly, and does not necessarily arise from a continuous time evolution. The full-period evolution operator is called a quantum walk, and starting the period at half time, which is called choosing another timeframe, leads to a second quantum walk. We assume that these walks have gaps at the spectral points ±1\pm1, up to at most finite dimensional eigenspaces. Walks with these gap properties have been completely classified by triples of integer indices (arXiv:1611.04439). These indices, taken for both timeframes, thus become classifying for half-step operators. In addition a further index quantity is required to classify the half step operators, which decides whether a continuous local driving process exists. In total, this amounts to a classification by five independent indices. We show how to compute these as Fredholm indices of certain chiral block operators, show the completeness of the classification, and clarify the relations to the two sets of walk indices. Within this theory we prove bulk-edge correspondence, where second timeframe allows to distinguish between symmetry protected edge states at +1+1 and 1-1 which is not possible with only one timeframe. We thus resolve an apparent discrepancy between our above mentioned index classification for walks, and indices defined (arXiv:1208.2143). The discrepancy turns out to be one of different definitions of the term `quantum walk'.Comment: 25 pages, 2 figure

    Propagation of Quantum Walks in Electric Fields

    Get PDF
    We study one-dimensional quantum walks in a homogenous electric field. The field is given by a phase which depends linearly on position and is applied after each step. The long time propagation properties of this system, such as revivals, ballistic expansion, and Anderson localization, depend very sensitively on the value of the electric field, Φ, e.g., on whether Φ/(2π) is rational or irrational. We relate these properties to the continued fraction expansion of the field. When the field is given only with finite accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time scales

    Quantum walks: Schur functions meet symmetry protected topological phases

    Get PDF
    This paper uncovers and exploits a link between a central object in harmonic analysis, the so-called Schur functions, and the very hot topic of symmetry protected topological phases of quantum matter. This connection is found in the setting of quantum walks, i.e. quantum analogs of classical random walks. We prove that topological indices classifying symmetry protected topological phases of quantum walks are encoded by matrix Schur functions built out of the walk. This main result of the paper reduces the calculation of these topological indices to a linear algebra problem: calculating symmetry indices of finite-dimensional unitaries obtained by evaluating such matrix Schur functions at the symmetry protected points ±1\pm1. The Schur representation fully covers the complete set of symmetry indices for 1D quantum walks with a group of symmetries realizing any of the symmetry types of the tenfold way. The main advantage of the Schur approach is its validity in the absence of translation invariance, which allows us to go beyond standard Fourier methods, leading to the complete classification of non-translation invariant phases for typical examples.Comment: 33 pages, 1 figur

    Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations

    Full text link
    Quantum walks subject to decoherence generically suffer the loss of their genuine quantum feature, a quadratically faster spreading compared to classical random walks. This intuitive statement has been verified analytically for certain models and is also supported by numerical studies of a variety of examples. In this paper we analyze the long-time behavior of a particular class of decoherent quantum walks, which, to the best of our knowledge, was only studied at the level of numerical simulations before. We consider a local coin operation which is randomly and independently chosen for each time step and each lattice site and prove that, under rather mild conditions, this leads to classical behavior: With the same scaling as needed for a classical diffusion the position distribution converges to a Gaussian, which is independent of the initial state. Our method is based on non-degenerate perturbation theory and yields an explicit expression for the covariance matrix of the asymptotic Gaussian in terms of the randomness parameters
    corecore