11 research outputs found
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an “end-on” manner. uSTA-guided modeling and a high-resolution cryo–electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis
Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide
Efficient production and secretion of recombinant proteins in mammalian cell lines relies in a combination of genetic, metabolic and culture strategy factors. The present work assesses the influence of two key genetic components of expression vectors (promoter and signal peptide) on protein production and secretion effciency in HEK293 cells expressing eGFP as a reporter protein. Firstly, the strength of 3 different promoters was evaluated using transient expression methods. Flow cytometry analysis revealed that the highest level of intracellular protein expression was found when eGFP was under the control of CMV promoter, being 3-times higher in comparison to the rest of the promoters tested. Secondly, 5 different signal peptides were assessed in stable transfected cell lines. Spectrofluorometry was used to determine intra- and extracellular protein expression levels in terms of fluorescence, and the results were further confirmed by SDS-PAGE. The highest secretion efficiency was found for human IFNα2 signal peptide, achieving up to 2-fold increase in the amount of secreted protein compared to other signal peptides. The results showed that the combination of CMV promoter and IFNα2 signal peptide resulted highly efficient for recombinant protein production in HEK293 cells
Homogeneous antibody-drug conjugates: DAR 2 anti-HER2 obtained by conjugation on isolated light chain followed by mAb assembly
International audienceDespite advances in medical care, cancer remains a major threat to human health. Antibody-drug conjugates (ADCs) are a promising targeted therapy to overcome adverse side effects to normal tissues. In this field, the current challenge is obtaining homogeneous preparations of conjugates, where a defined number of drugs are conjugated to specific antibody sites. Site-directed cysteine-based conjugation is commonly used to obtain homogeneous ADC, but it is a time-consuming and expensive approach due to the need for extensive antibody engineering to identify the optimal conjugation sites and reductionoxidation protocols are specific for each antibody. There is thus a need for ADC platforms that offer homogeneity and direct applicability to the already approved antibody therapeutics. Here we describe a novel approach to derive homogeneous ADCs with drug-to-antibody ratio of 2 from any human immunoglobulin 1 (IgG 1), using trastuzumab as a model. The method is based on the production of heavy chains (HC) and light chains (LC) in two recombinant HEK293 independent cultures, so the original amino acid sequence is not altered. Isolated LC was effectively conjugated to a single drug-linker (vcMMAE) construct and mixed to isolated HC dimers, in order to obtain a correctly folded ADC. The relevance of the work was validated in terms of ADC homogeneity (HIC-HPLC, MS), purity (SEC-HPLC), isolated antigen recognition (ELISA) and biological activity (HER2-positive breast cancer cells cytotoxicity assays)