1,341 research outputs found
Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180  MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4  pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.United States. National Institutes of Health (R01-CA142575)United States. National Institutes of Health (R01-CA097305)United States. National Institutes of Health (R01-CA187595)United States. National Institutes of Health (R00-EB011889
Dutch dwellings
Applying Generative Design (GD) for dwelling is not very common but it opens up the possibility to study whether GD systems can reproduce existing design typologies. Dutch dwellings as an exemplification of a design typology are analysed using the SAR methodology. Building regulations are used as input to a GD system along with the typical requirements for a family house. The results show that not all existing typologies can exactly be reproduced, but the generated designs have a remarkable resemblance with Dutch dwellings. They also demonstrate that Dutch dwelling identity is at least partially encoded in Dutch building regulations. Coding of yet unknown architectural identities requires new GD metaphors to support the architect
Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring.
Cerebral blood flow (CBF) during stepped hypercapnia was measured simultaneously in the rat brain using near-infrared diffuse correlation spectroscopy (DCS) and arterial spin labeling MRI (ASL). DCS and ASL CBF values agree very well, with high correlation (R=0.86, p< 10(-9)), even when physiological instability perturbed the vascular response. A partial volume effect was evident in the smaller magnitude of the optical CBF response compared to the MRI values (averaged over the cortical area), primarily due to the inclusion of white matter in the optically sampled volume. The 8.2 and 11.7 mm mid-separation channels of the multi-distance optical probe had the lowest partial volume impact, reflecting ~75 % of the MR signal change. Using a multiplicative correction factor, the ASL CBF could be predicted with no more than 10% relative error, affording an opportunity for real-time relative cerebral metabolism monitoring in conjunction with MR measurement of cerebral blood volume using super paramagnetic contrast agents.R01 EB006385 - NIBIB NIH HHS; R01 EB001954 - NIBIB NIH HHS; R01 NS057476 - NINDS NIH HHS; P41 RR014075 - NCRR NIH HHS; R01 HD042908-07 - NICHD NIH HHS; R01 EB002066 - NIBIB NIH HHS; R01 HD042908-06 - NICHD NIH HHS; R01 HD042908 - NICHD NIH HHSPublished versio
Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models
We characterize cerebral sensitivity across the entire adult human head for diffuse correlation spectroscopy, an optical technique increasingly used for bedside cerebral perfusion monitoring. Sixteen subject-specific magnetic resonance imaging-derived head models were used to identify high sensitivity regions by running Monte Carlo light propagation simulations at over eight hundred uniformly distributed locations on the head. Significant spatial variations in cerebral sensitivity, consistent across subjects, were found. We also identified correlates of such differences suitable for real-time assessment. These variations can be largely attributed to changes in extracerebral thickness and should be taken into account to optimize probe placement in experimental settings
Recommended from our members
Measuring Temperature Induced Phase Change Kinetics in Subcutaneous Adipose Tissues Using Near Infrared Spectroscopy, MR Imaging and Spectroscopy and OCT
Monitoring phase transition in adipose tissue and formation of lipid crystals is important in Cryo-procedures such as Selective Cryolipolysis (SC). We exploited a Near-Infrared Spectroscopy (NIRS) method to monitor the onset of fat phase transition (freezing/melting) in human abdominal adipose tissue. The changes in optical scattering were compared to Differential Scanning Calorimetry (DSC) measurements as the gold standard method for measuring phase transition. For some samples, concurrent in vitro measurements of optical scattering using NIRS and the MR signal parameters (T2*) as well as spectral parameters using MR Spectroscopy were performed in a 3 T MR scanner during a cooling/heating cycle. To further investigate phase-transition in adipose tissue in microscopic level, an identical cooling/heating procedure was replicated on a small piece of fat harvested from the same tissue while being imaged under Optical Coherence Tomography (OCT). For all methods, their relationship with temperature shows inflexions in a narrow range, characteristic of lipid phase transition. In particular, the good agreement between DSC and Optical measurements suggests that such NIRS methods can be used to improve dosimetry and to minimize variations of clinical outcome for cryo-procedures
Rapidly expanding thenar eminence ganglion: a case report
Introduction
This study documents the first reported case of a rapidly growing (volar) thenar eminence ganglion arising form the first carpometacarpal joint, masquerading as a sarcoma. The discussion informs the hand surgeon on the evidence regarding the unusual presenting features.
Case presentation
An 85 year old left hand dominant female presented with a six week history of rapidly growing lump on the thenar eminence. Clinical examination revealed a non-tender large lobulated mobile swelling measuring 5 × 4 cm and involving the whole thenar eminence.
Conclusion
Ganglia may present from the thenar eminence and are a source of diagnostic confusion
- …