445 research outputs found

    A lattice polymer study of DNA renaturation dynamics

    Full text link
    DNA renaturation is the recombination of two complementary single strands to form a double helix. It is experimentally known that renaturation proceeds through the formation of a double stranded nucleus of several base pairs (the rate limiting step) followed by a much faster zippering. We consider a lattice polymer model undergoing Rouse dynamics and focus on the nucleation of two diffusing strands. We study numerically the dependence of various nucleation rates on the strand lengths and on an additional local nucleation barrier. When the local barrier is sufficiently high, all renaturation rates considered scale with the length as predicted by Kramers' rate theory and are also in agreement with experiments: their scaling behavior is governed by exponents describing equilibrium properties of polymers. When the local barrier is lowered renaturation occurs in a regime of genuine non-equilibrium behavior and the scaling deviates from the rate theory prediction.Comment: 13 pages, 6 figures. To appear in Journal of Statistical Mechanic

    Breakdown of thermodynamic equilibrium for DNA hybridization in microarrays

    Full text link
    Test experiments of hybridization in DNA microarrays show systematic deviations from the equilibrium isotherms. We argue that these deviations are due to the presence of a partially hybridized long-lived state, which we include in a kinetic model. Experiments confirm the model predictions for the intensity vs. free energy behavior. The existence of slow relaxation phenomena has important consequences for the specificity of microarrays as devices for the detection of a target sequence from a complex mixture of nucleic acids.Comment: 4 pages, 4 figure

    Coexistence of excited states in confined Ising systems

    Full text link
    Using the density-matrix renormalization-group method we study the two-dimensional Ising model in strip geometry. This renormalization scheme enables us to consider the system up to the size 300 x infinity and study the influence of the bulk magnetic field on the system at full range of temperature. We have found out the crossover in the behavior of the correlation length on the line of coexistence of the excited states. A detailed study of scaling of this line is performed. Our numerical results support and specify previous conclusions by Abraham, Parry, and Upton based on the related bubble model.Comment: 4 Pages RevTeX and 4 PostScript figures included; the paper has been rewritten without including new result

    Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type

    Full text link
    A mean field theory is developed for the calculation of the surface free energy of the staggered BCSOS, (or six vertex) model as function of the surface orientation and of temperature. The model approximately describes surfaces of crystals with nearest neighbor attractions and next nearest neighbor repulsions. The mean field free energy is calculated by expressing the model in terms of interacting directed walks on a lattice. The resulting equilibrium shape is very rich with facet boundaries and boundaries between reconstructed and unreconstructed regions which can be either sharp (first order) or smooth (continuous). In addition there are tricritical points where a smooth boundary changes into a sharp one and triple points where three sharp boundaries meet. Finally our numerical results strongly suggest the existence of conical points, at which tangent planes of a finite range of orientations all intersect each other. The thermal evolution of the equilibrium shape in this model shows strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include

    Effective affinities in microarray data

    Full text link
    In the past couple of years several studies have shown that hybridization in Affymetrix DNA microarrays can be rather well understood on the basis of simple models of physical chemistry. In the majority of the cases a Langmuir isotherm was used to fit experimental data. Although there is a general consensus about this approach, some discrepancies between different studies are evident. For instance, some authors have fitted the hybridization affinities from the microarray fluorescent intensities, while others used affinities obtained from melting experiments in solution. The former approach yields fitted affinities that at first sight are only partially consistent with solution values. In this paper we show that this discrepancy exists only superficially: a sufficiently complete model provides effective affinities which are fully consistent with those fitted to experimental data. This link provides new insight on the relevant processes underlying the functioning of DNA microarrays.Comment: 8 pages, 6 figure

    Fixed Point of the Finite System DMRG

    Full text link
    The density matrix renormalization group (DMRG) is a numerical method that optimizes a variational state expressed by a tensor product. We show that the ground state is not fully optimized as far as we use the standard finite system algorithm, that uses the block structure B**B. This is because the tensors are not improved directly. We overcome this problem by using the simpler block structure B*B for the final several sweeps in the finite iteration process. It is possible to increase the numerical precision of the finite system algorithm without increasing the computational effort.Comment: 6 pages, 4 figure

    Crossover from Reptation to Rouse dynamics in the Cage Model

    Full text link
    The two-dimensional cage model for polymer motion is discussed with an emphasis on the effect of sideways motions, which cross the barriers imposed by the lattice. Using the Density Matrix Method as a solver of the Master Equation, the renewal time and the diffusion coefficient are calculated as a function of the strength of the barrier crossings. A strong crossover influence of the barrier crossings is found and it is analyzed in terms of effective exponents for a given chain length. The crossover scaling functions and the crossover scaling exponents are calculated.Comment: RevTeX, 11 PostScript figures include

    Transfer-matrix DMRG for stochastic models: The Domany-Kinzel cellular automaton

    Full text link
    We apply the transfer-matrix DMRG (TMRG) to a stochastic model, the Domany-Kinzel cellular automaton, which exhibits a non-equilibrium phase transition in the directed percolation universality class. Estimates for the stochastic time evolution, phase boundaries and critical exponents can be obtained with high precision. This is possible using only modest numerical effort since the thermodynamic limit can be taken analytically in our approach. We also point out further advantages of the TMRG over other numerical approaches, such as classical DMRG or Monte-Carlo simulations.Comment: 9 pages, 9 figures, uses IOP styl

    Stability domains of actin genes and genomic evolution

    Full text link
    In eukaryotic genes the protein coding sequence is split into several fragments, the exons, separated by non-coding DNA stretches, the introns. Prokaryotes do not have introns in their genome. We report the calculations of stability domains of actin genes for various organisms in the animal, plant and fungi kingdoms. Actin genes have been chosen because they have been highly conserved during evolution. In these genes all introns were removed so as to mimic ancient genes at the time of the early eukaryotic development, i.e. before introns insertion. Common stability boundaries are found in evolutionary distant organisms, which implies that these boundaries date from the early origin of eukaryotes. In general boundaries correspond with introns positions of vertebrates and other animals actins, but not much for plants and fungi. The sharpest boundary is found in a locus where fungi, algae and animals have introns in positions separated by one nucleotide only, which identifies a hot-spot for insertion. These results suggest that some introns may have been incorporated into the genomes through a thermodynamic driven mechanism, in agreement with previous observations on human genes. They also suggest a different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres
    • …
    corecore