1,686 research outputs found

    SU(2) approach to the pseudogap phase of high-temperature superconductors: electronic spectral functions

    Full text link
    We use an SU(2) mean-field theory approach with input from variational wavefunctions of the t-J model to study the electronic spectra in the pseudogap phase of cuprates. In our model, the high-temperature state of underdoped cuprates is realized by classical fluctuations of the order parameter between the d-wave superconductor and the staggered-flux state. Spectral functions of the intermediate and the averaged states are computed and analyzed. Our model predicts a photoemission spectrum with an asymmetric gap structure interpolating between the superconducting gap centered at the Fermi energy and the asymmetric staggered-flux gap. This asymmetry of the gap changes sign at the point where the Fermi surface crosses the diagonal (\pi,0)-(0,\pi).Comment: 7 pages, 10 figures; estimate of applicable temperature range corrected and refs. added, ref. to ARPES paper added; minor changes to published versio

    ARPES on HTSC: simplicity vs. complexity

    Full text link
    A notable role in understanding of microscopic electronic properties of high temperature superconductors (HTSC) belongs to angle resolved photoemission spectroscopy (ARPES). This technique supplies a direct window into reciprocal space of solids: the momentum-energy space where quasiparticles (the electrons dressed in clouds of interactions) dwell. Any interaction in the electronic system, e.g. superconducting pairing, leads to modification of the quasi-particle spectrum--to redistribution of the spectral weight over the momentum-energy space probed by ARPES. A continued development of the technique had an effect that the picture seen through the ARPES window became clearer and sharper until the complexity of the electronic band structure of the cuprates had been resolved. Now, in an optimal for superconductivity doping range, the cuprates much resemble a normal metal with well predicted electronic structure, though with rather strong electron-electron interaction. This principal disentanglement of the complex physics from complex structure reduced the mystery of HTSC to a tangible problem of interaction responsible for quasi-particle formation. Here we present a short overview of resent ARPES results, which, we believe, denote a way to resolve the HTSC puzzle.Comment: A review written for a special issue of FN

    Phenomenological theory of the underdoped phase of a high-Tc_c superconductor

    Full text link
    We model the Fermi surface of the cuprates by one-dimensional nested parts near (0,π)(0,\pi) and (π,0)(\pi,0) and unnested parts near the zone diagonals. Fermions in the nested regions form 1D spin liquids, and develop spectral gaps below some ∼T∗\sim T^*, but superconducting order is prevented by 1D phase fluctuations. We show that the Josephson coupling between order parameters at (0,π)(0,\pi) and (π,0)(\pi,0) locks their relative phase at a crossover scale T∗∗<T∗T^{**}< T^*. Below T∗∗T^{**}, the system response becomes two-dimensional, and the system displays Nernst effect. The remaining total phase gets locked at Tc<T∗∗T_c < T^{**}, at which the system develops a (quasi-) long-range superconducting order.Comment: 4 pages, 1 figure; typos corrected, references adde

    Aspects of Duality in Nodal Liquids

    Full text link
    Starting from a microscopic t-J like model and a SU(2) spin-charge separation ansatz, a relativistic continuum gauge lagrangian is obtained in the vicinity of a nodal point of the Fermi surface. The excitations in the pseudogap phase are described by topological excitations in the dual model which has a Z_2 global symmetry due to the effect of instantons. Confinement of spinon and holons emerge from this picture. The adjoint and fundamental strings are associated with stripes. As the spin gap decreases a local Z_2 symmetry emerges.Comment: 15 pages revtex, no figure

    Signatures of non-monotonic d-wave gap in electron-doped cuprates

    Full text link
    We address the issue whether the data on optical conductivity and Raman scattering in electron-doped cuprates below TcT_c support the idea that the d−d-wave gap in these materials is non-monotonic along the Fermi surface. We calculate the conductivity and Raman intensity for elastic scattering, and find that a non-monotonic gap gives rise to several specific features in optical and Raman response functions. We argue that all these features are present in the experimental data on Nd2−x_{2-x}Cex_{x}CuO4_4 and Pr2−x_{2-x}Cex_{x}CuO4_4 compounds.Comment: 7 pages, 6 figure

    Fermi pockets and correlation effects in underdoped YBa2Cu3O6.5

    Full text link
    The detection of quantum oscillations in the electrical resistivity of YBa2Cu3O6.5 provides direct evidence for the existence of Fermi surface pockets in an underdoped cuprate. We present a theoretical study of the electronic structure of YBa2Cu3O7-d (YBCO) aiming at establishing the nature of these Fermi pockets, i.e. CuO2 plane versus CuO chain or BaO. We argue that electron correlation effects, such as orbital-dependent band distortions and highly anisotropic self-energy corrections, must be taken into account in order to properly interpret the quantum oscillation experiments.Comment: A high-resolution version can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/YBCO_OrthoII_LDA.pd
    • …
    corecore