2,479 research outputs found

    Ostensive signals: markers of communicative relevance of gesture during demonstration to adults and children

    Get PDF
    Speakers adapt their speech and gestures in various ways for their audience. We investigated further whether they use ostensive signals (eye gaze, ostensive speech (e.g. like this, this) or a combination of both) in relation to their gestures when talking to different addressees, i.e., to another adult or a child in a multimodal demonstration task. While adults used more eye gaze towards their gestures with other adults than with children, they were more likely to use combined ostensive signals for children than for adults. Thus speakers mark the communicative relevance of their gestures with different types of ostensive signals and by taking different types of addressees into account

    Analysing Magnetism Using Scanning SQUID Microscopy

    Get PDF
    Scanning superconducting quantum interference device microscopy (SSM) is a scanning probe technique that images local magnetic flux, which allows for mapping of magnetic fields with high field and spatial accuracy. Many studies involving SSM have been published in the last decades, using SSM to make qualitative statements about magnetism. However, quantitative analysis using SSM has received less attention. In this work, we discuss several aspects of interpreting SSM images and methods to improve quantitative analysis. First, we analyse the spatial resolution and how it depends on several factors. Second, we discuss the analysis of SSM scans and the information obtained from the SSM data. Using simulations, we show how signals evolve as a function of changing scan height, SQUID loop size, magnetization strength and orientation. We also investigated 2-dimensional autocorrelation analysis to extract information about the size, shape and symmetry of magnetic features. Finally, we provide an outlook on possible future applications and improvements.Comment: 16 pages, 10 figure

    Efficient solar cells by space processing

    Get PDF
    Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation

    Geometric magnetism in open quantum systems

    Full text link
    An isolated classical chaotic system, when driven by the slow change of several parameters, responds with two reaction forces: geometric friction and geometric magnetism. By using the theory of quantum fluctuation relations we show that this holds true also for open quantum systems, and provide explicit expressions for those forces in this case. This extends the concept of Berry curvature to the realm of open quantum systems. We illustrate our findings by calculating the geometric magnetism of a damped charged quantum harmonic oscillator transported along a path in physical space in presence of a magnetic field and a thermal environment. We find that in this case the geometric magnetism is unaffected by the presence of the heat bath.Comment: 7 pages. Signs corrected. v3 Accepted in Phys. Rev.

    Logarithmic oscillators: ideal Hamiltonian thermostats

    Get PDF
    A logarithmic oscillator (in short, log-oscillator) behaves like an ideal thermostat because of its infinite heat capacity: when it weakly couples to another system, time averages of the system observables agree with ensemble averages from a Gibbs distribution with a temperature T that is given by the strength of the logarithmic potential. The resulting equations of motion are Hamiltonian and may be implemented not only in a computer but also with real-world experiments, e.g., with cold atoms.Comment: 5 pages, 3 figures. v4: version accepted in Phys. Rev. Let
    • …
    corecore