541 research outputs found

    New local field quantity describing the high gradient limit of accelerating structures

    Get PDF
    A new local field quantity is presented which gives the high gradient performance limit of accelerating structures due to vacuum rf breakdown. The new field quantity, a modified Poynting vector S_{c}, is derived from a model of the breakdown trigger in which field emission currents from potential breakdown sites cause local pulsed heating. The field quantity S_{c} takes into account both active and reactive power flow on the structure surface. This new quantity has been evaluated for many X-band and 30 GHz rf tests, both traveling wave and standing wave, and the value of S_{c} achieved in the experiments agrees well with analytical estimates

    Fluxon Pinning in Niobium Films

    Get PDF
    Resistive losses induced by the presence of trapped magnetic flux in niobium superconducting films have been studied using 1.5 GHz microwaves. They are measured to span a very broad spectrum depending on the film-substrate interface and on the gas used in the sputtering discharge. An interpretation in terms of pinning by noble gas clusters is considered

    Advanced Experimental Techniques for RF and DC Breakdown Research

    Get PDF
    Advanced experimental techniques are being developed to analyze RF and DC breakdown events. First measurements with a specially built spectrometer have been made with a DC spark setup [1] at CERN and will soon be installed in the CLIC 30GHz accelerating structure test stand to allow comparison between DC and RF breakdown phenomena. This spectrometer is able to measure the light intensity development during a breakdown in narrow wavelength bands in the visible and near infrared range. This will give information about the important aspects of the breakdown including chemical elements, temperature, plasma parameters and possibly precursors of a breakdown

    Study of the Residual Resistance of Superconducting Niobium Films at 1.5 GHz

    Get PDF
    A study of the main potential contributions to the residual surface resistance of niobium-coated cavities is reviewed. They are the formation of hydride precipitates, the contamination by discharge gas atoms and the presence of macroscopic defects in the film, induced by defects in the substrate. It will be shown that residual resistances as low as those obtained for bulk niobium can be achieved, together with a very small dependence on the amplitude of the RF field

    Study of the residual surface resistance of niobium films at 1.5 GHz

    Get PDF
    Potential contributions to the residual surface resistance of niobium films exposed to 1.5 GHz microwaves are reviewed and studied. These include the oxidation of the film surface, the formation of hydride precipitates, the contamination by noble gas atoms and the presence of macroscopic film defects such as those resulting from the roughness of the substrate. Particular attention is given to the dependence of the residual resistance on the amplitude of the microwave. Results similar to those obtained for bulk niobium provide strong evidence against the conjecture that the small size of the film grains should be a fundamental limitation to the production of films having a low residual resistance

    CERN studies on niobium-coated 1.5 GHz copper cavities

    Get PDF
    Studies at CERN on niobium-coated 1.5 GHz superconducting cavities are aimed at understanding and possibly curing the causes of the residual resistance increase observed when increasing the accelerating gradient above 15 MV/m. Amongst the possible causes, the surface defects and roughness, the grain size, the hydrogen content and the thermal effects are currently being investigated. The present status of understanding, together with some recent results on high field operation, are presented and discussed

    Role of surface microgeometries on electron escape probability and secondary electron yield of metal surfaces

    Get PDF
    The influence of microgeometries on the Secondary Electron Yield (SEY) of surfaces is investigated. Laser written structures of different aspect ratio (height to width) on a copper surface tuned the SEY of the surface and reduced its value to less than unity. The aspect ratio of microstructures was methodically controlled by varying the laser parameters. The results obtained corroborate a recent theoretical model of SEY reduction as a function of the aspect ratio of microstructures. Nanostructures - which are formed inside the microstructures during the interaction with the laser beam - provided further reduction in SEY comparable to that obtained in the simulation of structures which were coated with an absorptive layer suppressing secondary electron emission

    High-Q, high gradient niobium-coated cavities at CERN

    Get PDF
    Superconducting cavities made by sputter-deposition of a thin niobium film onto copper have proven over the years to be a viable alternative to bulk niobium, the best example being the very successful operation of LEP at 200 GeV. It will be shown that this technology, investigated at 1.5 GHz by a dedicated R&D effort at CERN, can be developed to unprecedented performance, proving that no fundamental limitation prevents high quality factors to be maintained over a broad range of accelerating field

    Influence of the nature of the substrate on the growth of superconducting niobium films

    Get PDF
    The superconducting properties of niobium films sputtered onto the inner walls of radiofrequency cavities, including their surface resistance to 1.5 GHz microwaves, have been studied as a function of the nature of the substrate. Films grown on oxide-free copper or niobium behave differently from films grown on other substrates. The results are analysed in terms of the film texture and internal stresses

    Status of the HIE-ISOLDE project at CERN

    Full text link
    The HIE-ISOLDE project represents a major upgrade of the ISOLDE nuclear facility with a mandate to significantly improve the quality and increase the intensity and energy of radioactive nuclear beams produced at CERN. The project will expand the experimental nuclear physics programme at ISOLDE by focusing on an upgrade of the existing Radioactive ion beam EXperiment (REX) linac with a 40 MV superconducting linac comprising thirty-two niobium-on-copper sputter-coated quarter-wave resonators housed in six cryomodules. The new linac will raise the energy of post-accelerated beams from 3 MeV/u to over 10 MeV/u. The upgrade will be staged to first deliver beam energies of 5.5 MeV/u using two high-β\beta cryomodules placed downstream of REX, before the energy variable section of the existing linac is replaced with two low-β\beta cryomodules and two additional high-β\beta cryomodules are installed to attain over 10 MeV/u with full energy variability above 0.45 MeV/u. An overview of the project including a status summary of the different R&D activities and the schedule will outlined.Comment: 7 pages, 12 figures, submitted to the Heavy Ion Accelerator Technology conference (HIAT) 2012, in Chicag
    corecore