16,946 research outputs found
Gauge unification in noncommutative geometry
Gauge unification is widely considered to be a desirable feature for
extensions of the standard model. Unfortunately the standard model itself does
not exhibit a unification of its running gauge couplings but it is required by
grand unified theories as well as the noncommutative version of the standard
model [2].
We will consider here the extension of the noncommutative standard model by
vector doublets as proposed in [6]. Two consequences of this modification are:
1. the relations of the coupling constants at unification energy are altered
with respect to the well known relation from grand unified theories. 2. The
extended model allows for unification of the gauge couplings at ~10^(13) GeV
Almost-Commutative Geometries Beyond the Standard Model III: Vector Doublets
We will present a new extension of the standard model of particle physics in
its almostcommutative formulation. This extension has as its basis the algebra
of the standard model with four summands [11], and enlarges only the particle
content by an arbitrary number of generations of left-right symmetric doublets
which couple vectorially to the U(1)_YxSU(2)_w subgroup of the standard model.
As in the model presented in [8], which introduced particles with a new colour,
grand unification is no longer required by the spectral action. The new model
may also possess a candidate for dark matter in the hundred TeV mass range with
neutrino-like cross section
Almost-Commutative Geometries Beyond the Standard Model II: New Colours
We will present an extension of the standard model of particle physics in its
almost-commutative formulation. This extension is guided by the minimal
approach to almost-commutative geometries employed in [13], although the model
presented here is not minimal itself.
The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs
model which consists of the standard model and two new fermions of opposite
electro-magnetic charge which may possess a new colour like gauge group. As a
new phenomenon, grand unification is no longer required by the spectral action.Comment: Revised version for publication in J.Phys.A with corrected Higgs
masse
The Inverse Seesaw Mechanism in Noncommutative Geometry
In this publication we will implement the inverse Seesaw mechanism into the
noncommutative framework on the basis of the AC-extension of the Standard
Model. The main difference to the classical AC model is the chiral nature of
the AC fermions with respect to a U(1) extension of the Standard Model gauge
group. It is this extension which allows us to couple the right-handed
neutrinos via a gauge invariant mass term to left-handed A-particles. The
natural scale of these gauge invariant masses is of the order of 10^17 GeV
while the Dirac masses of the neutrino and the AC-particles are generated
dynamically and are therefore much smaller (ca. 1 GeV to 10^6 GeV). From this
configuration a working inverse Seesaw mechanism for the neutrinos is obtained
Almost-Commutative Geometries Beyond the Standard Model
In [7-9] and [10] the conjecture is presented that almost-commutative
geometries, with respect to sensible physical constraints, allow only the
standard model of particle physics and electro-strong models as
Yang-Mills-Higgs theories. In this publication a counter example will be given.
The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs
model which consists of the standard model of particle physics and two new
fermions of opposite electro-magnetic charge. This is the second
Yang-Mills-Higgs model within noncommutative geometry, after the standard
model, which could be compatible with experiments. Combined to a hydrogen-like
composite particle these new particles provide a novel dark matter candidate
Studying the Variation of the Fine Structure Constant Using Emission Line Multiplets
As an extension of the method by Bahcall et al. (2004) to investigate the
time dependence of the fine structure constant, we describe an approach based
on new observations of forbidden line multiplets from different ionic species.
We obtain optical spectra of fine structure transitions in [Ne III], [Ne V], [O
III], [OI], and [SII] multiplets from a sample of 14 Seyfert 1.5 galaxies in
the low-z range 0.035 < z < 0.281. Each source and each multiplet is
independently analyzed to ascertain possible errors. Averaging over our sample,
we obtain a conservative value alpha^2(t)/\alpha^2(0) = 1.0030+-0.0014.
However, our sample is limited in size and our fitting technique simplistic as
we primarily intend to illustrate the scope and strengths of emission line
studies of the time variation of the fine structure constant. The approach can
be further extended and generalized to a "many-multiplet emission line method"
analogous in principle to the corresponding method using absorption lines. With
that aim, we note that the theoretical limits on emission line ratios of
selected ions are precisely known, and provide well constrained selection
criteria. We also discuss several other forbidden and allowed lines that may
constitute the basis for a more rigorous study using high-resolution
instruments on the next generation of 8 m class telescopes.Comment: 20 pages, 4 figures, sumbitted to A
Influence of coating on the thermal resistance of a Ni-Based superalloy
In this paper, the influence of M-CrAlY polycrystalline coating on the thermal fatigue behavior of a Nickel-base superalloy has been investigated. A special device using a rotating bending machine and two thermal sources has been used to perform thermo-mechanical tests. The two thermal sources have been set to obtain temperature variations between 750 and 1120 °C in the central part of the specimens, with a frequency of 0.1 Hz. The results showed a deleterious effect of the coating on the fatigue resistance. Numerical simulations have been carried out on SAMCEF to determine the thermo-mechanical field of the so-tested specimens. Calculated thermo-mechanical cycles of critical sites are associated with microstructure evolution and damage by cracking observed on the specimens. Damage mechanisms related to the presence of coating are discussed
The signature of the tropospheric gravity wave background in observed mesoscale motion
How convection couples to mesoscale vertical motion and what determines these motions is poorly understood. This study diagnoses profiles of area-averaged mesoscale divergence from measurements of horizontal winds collected by an extensive upper-air sounding network of a recent campaign over the western tropical North Atlantic, the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) campaign. Observed area-averaged divergence amplitudes scale approximately inversely with area equivalent radius. This functional dependence is also confirmed in reanalysis data and a global freely-evolving simulation run at 2.5 km horizontal resolution. Based on the numerical data it is demonstrated that the energy spectra of inertia gravity waves can explain the scaling of divergence amplitudes with area. At individual times, however, few waves can dominate the region. Nearly monochromatic tropospheric waves are diagnosed in the soundings by means of an optimized hodograph analysis. For one day, results suggest that an individual wave directly modulated the satellite-observed cloud pattern. However, because such immediate wave impacts are rare, the systematic modulation of vertical motion due to inertia-gravity waves may be more relevant as a convection-modulating factor. The analytic relationship between energy spectra and divergence amplitudes proposed in this article, if confirmed by future studies, could be used to design better external forcing methods for regional models
A virtual world of paleontology
Computer-aided visualization and analysis of fossils has revolutionized the study of extinct organisms. Novel techniques allow fossils to be characterized in three dimensions and in unprecedented detail. This has enabled paleontologists to gain important insights into their anatomy, development, and preservation. New protocols allow more objective reconstructions of fossil organisms, including soft tissues, from incomplete remains. The resulting digital reconstructions can be used in functional analyses, rigorously testing long-standing hypotheses regarding the paleobiology of extinct organisms. These approaches are transforming our understanding of long-studied fossil groups, and of the narratives of organismal and ecological evolution that have been built upon them
- …