2,351 research outputs found
The resonance spectrum of the cusp map in the space of analytic functions
We prove that the Frobenius--Perron operator of the cusp map
, (which is an approximation of the
Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions
corresponding to eigenvalues different from 0 and 1. We also prove that for any
the spectrum of in the Hardy space in the disk
\{z\in\C:|z-q|<1+q\} is the union of the segment and some finite or
countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy
spaces is adde
Resonances of the cusp family
We study a family of chaotic maps with limit cases the tent map and the cusp
map (the cusp family). We discuss the spectral properties of the corresponding
Frobenius--Perron operator in different function spaces including spaces of
analytic functions. A numerical study of the eigenvalues and eigenfunctions is
performed.Comment: 14 pages, 3 figures. Submitted to J.Phys.
Resonances, Unstable Systems and Irreversibility: Matter Meets Mind
The fundamental time-reversal invariance of dynamical systems can be broken
in various ways. One way is based on the presence of resonances and their
interactions giving rise to unstable dynamical systems, leading to well-defined
time arrows. Associated with these time arrows are semigroups bearing time
orientations. Usually, when time symmetry is broken, two time-oriented
semigroups result, one directed toward the future and one directed toward the
past. If time-reversed states and evolutions are excluded due to resonances,
then the status of these states and their associated backwards-in-time oriented
semigroups is open to question. One possible role for these latter states and
semigroups is as an abstract representation of mental systems as opposed to
material systems. The beginnings of this interpretation will be sketched.Comment: 9 pages. Presented at the CFIF Workshop on TimeAsymmetric Quantum
Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior
Tecnico, Lisbon, Portugal; and at the Quantum Structures Association Meeting,
7-22 July 2004, University of Denver. Accepted for publication in the
Internation Journal of Theoretical Physic
Editorial: A better tomorrow: towards human-oriented, sustainable transportation systems
In a rapidly changing world, transportation is a big determinant of quality of life, financial growth and progress. New challenges (such as the emergence of the COVID-19 pandemic) and opportunities (such as the three revolutions of shared, electric and automated mobility) are expected to drastically change the future mobility landscape. Researchers, policy makers and practitioners are working hard to prepare for and shape the future of mobility that will maximize benefits. Adopting a human perspective as a guiding principle in this endeavor is expected to help prioritize the ârightâ needs as requirements. In this special issue, eight research papers outline ways in which transportation research can contribute to a better tomorrow. In this editorial, we position the research within the state-of-the-art, identify the needs for future research, and then outline how the included contributions fit in this puzzle. Naturally, the problem of sustainable future transportation systems is way too complicated to be covered with a single special issue. We thus conclude this editorial with a discussion about open questions and future research topics
The sustainability of shared mobility: Can a platform for shared rides reduce motorized traffic in cities?
Studies in several cities indicate that ridesourcing (ride-hailing) may increase traffic and congestion, given the substitution of more sustainable modes and the addition of empty kilometers. On the other hand, there is little evidence if smartphone apps that target shared rides have any influence on reducing traffic levels. We study the effects of a shared-mobility service offered by a start-up in Mexico City, Jetty, which is used by travelers to book a shared ride in a car, van or bus. A large-scale user survey was conducted to study trip characteristics, reasons for using the platform and the general travel choices of Jetty users. We calculate travel distance per trip leg, for the current choices and for the modes that riders would have chosen if the platform was not available. We find that the effect of the platform on vehicle kilometers traveled (VKT) depends on the rate of empty kilometers introduced by the fleet of vehicles, the substitution of public versus private transport modes, the occupancy rate of Jetty vehicles and assumptions on the occupancy rate of substituted modes. Following a sensitivity analysis approach for variables with unavailable data, we estimate that shared rides in cars increase VKT (in the range of 7 to 10 km/passenger), shared vans are able to decrease VKT (around â0.2 to â1.1 km/passenger), whereas buses are estimated to increase VKT (0.4 to 1.1 km/passenger), in our preferred scenarios. These results stem from the tradeoff between the effects of the occupancy rates per vehicle (larger vehicles are shared by more people) and the attractiveness of the service for car users (shared vans attract more car drivers than buses booked through Jetty). Our findings point to the relevance of shared rides in bigger vehicles such as vans as competitors to low occupancy car services for the future of mobility in cities, and to the improvement of public transportation services through the inclusion of quality attributes as provided by new shared-mobility services
Exploring satisfaction for transfers at intermodal interchanges: A comparison of Germany and India
Multimodality in Public Transport has been proven to be one of the main drivers of sustainability and economic feasibility for the last few decades. Consequently, user satisfaction for transfers is the key to adequately serving demand. This research studies on commutersâ perception of comfort at interchanges, focusing on the connection between metro systems and other modes. Satisfaction analysis and modelling is conducted using weighted regression, factor analysis and ordered logit models for nine transfers at major interchanges in two Indian cities (New Delhi and Kolkata) and one German city (Munich); aiming at revealing the differences in user satisfaction in developing and developed economy, and for different Public Transport quality and interchanges. The results indicate that factors of transfer quality, accessibility and physical hindrances are significant in Indian case and the human factor, and transfer quality are significant in the case of Munich, Germany. Additionally, it is found that perceived comfort differs on commutersâ experiences with transfer distance and time
Factors affecting the adoption and use of urban air mobility
Technological advances have recently led to the development of urban air mobility (UAM), an alternative transportation mode with several concepts including vehicles operated by on-demand fully-automated vertical take-off and landing aircraft (VTOL) for intra-city passenger transportation. However, despite a growing interest in UAM, understanding usersâ perceptions to it remains limited. This research aims to identify and quantify the factors affecting the adoption and use of UAM, based on relevant tools from the literature, such as recurring factors in studies on aerial vehicle concepts, ground autonomous vehicles, but also acceptance models, such as the Technology Acceptance Model by Davis et al. (1989). A stated-preference survey was developed to assess the perception of users in terms of adoption time horizon, including options such as the first six years of the serviceâs implementation, âunsureâ, and âneverâ. The obtained results were evaluated using exploratory factor analyses, and the specification and estimation of suitable discrete choice models, multinomial logit models (MNLs) and ordered logit models (OLMs), with adoption time horizon as dependent variable. Findings revealed the importance of safety and trust, affinity to automation, data concerns, social attitude, and socio-demographics for adoption. Factors, such as the value of time savings, the perception of automation costs, and service reliability, were also found to be highly influential. There was also an indication that skeptical respondents, i.e. answering âunsureâ, had a behavior similar to late and non-adopters, i.e. adoption time horizon higher than six years or answering âneverâ. The summarized results were represented in an extended Technology Acceptance Model for urban air mobility, and provided insights for policymakers and industrial stakeholders
Criticality, Fractality and Intermittency in Strong Interactions
Assuming a second-order phase transition for the hadronization process, we
attempt to associate intermittency patterns in high-energy hadronic collisions
to fractal structures in configuration space and corresponding intermittency
indices to the isothermal critical exponent at the transition temperature. In
this approach, the most general multidimensional intermittency pattern,
associated to a second-order phase transition of the strongly interacting
system, is determined, and its relevance to present and future experiments is
discussed.Comment: 15 pages + 2 figures (available on request), CERN-TH.6990/93,
UA/NPPS-5-9
Decoherence, Correlation, and Unstable Quantum States in Semiclassical Cosmology
It is demonstrated that almost any S-matrix of quantum field theory in curved
spaces posses an infinite set of complex poles (or branch cuts). These poles
can be transformed into complex eigenvalues, the corresponding eigenvectors
being Gamow vectors. All this formalism, which is heuristic in ordinary Hilbert
space, becomes a rigorous one within the framework of a properly chosen rigged
Hilbert space. Then complex eigenvalues produce damping or growing factors. It
is known that the growth of entropy, decoherence, and the appearance of
correlations, occur in the universe evolution, but only under a restricted set
of initial conditions. It is proved that the damping factors allow to enlarge
this set up to almost any initial conditions.Comment: 19 pgs. Latex fil
Irreversible Quantum Mechanics in the Neutral K-System
The neutral Kaon system is used to test the quantum theory of resonance
scattering and decay phenomena. The two dimensional Lee-Oehme-Yang theory with
complex Hamiltonian is obtained by truncating the complex basis vector
expansion of the exact theory in Rigged Hilbert space. This can be done for K_1
and K_2 as well as for K_S and K_L, depending upon whether one chooses the
(self-adjoint, semi-bounded) Hamiltonian as commuting or non-commuting with CP.
As an unexpected curiosity one can show that the exact theory (without
truncation) predicts long-time 2 pion decays of the neutral Kaon system even if
the Hamiltonian conserves CP.Comment: 36 pages, 1 PostScript figure include
- âŠ