9 research outputs found

    HNF4alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Hypertension

    Get PDF
    Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS

    Hypertension in children with chronic kidney disease: pathophysiology and management

    Get PDF
    Arterial hypertension is very common in children with all stages of chronic kidney disease (CKD). While fluid overload and activation of the renin–angiotensin system have long been recognized as crucial pathophysiological pathways, sympathetic hyperactivation, endothelial dysfunction and chronic hyperparathyroidism have more recently been identified as important factors contributing to CKD-associated hypertension. Moreover, several drugs commonly administered in CKD, such as erythropoietin, glucocorticoids and cyclosporine A, independently raise blood pressure in a dose-dependent fashion. Because of the deleterious consequences of hypertension on the progression of renal disease and cardiovascular outcomes, an active screening approach should be adapted in patients with all stages of CKD. Before one starts antihypertensive treatment, non-pharmacological options should be explored. In hemodialysis patients a low salt diet, low dialysate sodium and stricter dialysis towards dry weight can often achieve adequate blood pressure control. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers are first-line therapy for patients with proteinuria, due to their additional anti-proteinuric properties. Diuretics are a useful alternative for non-proteinuric patients or as an add-on to renin–angiotensin system blockade. Multiple drug therapy is often needed to maintain blood pressure below the 90th percentile target, but adequate blood pressure control is essential for better renal and cardiovascular long-term outcomes

    Kidney-based in vitro models for drug-induced toxicity testing

    No full text
    corecore