160 research outputs found

    Theoretical Investigation on Injection Locking of the EU 170 GHz 2 MW TE34,19-Mode Coaxial-Cavity Gyrotron

    Get PDF
    Injection locking of gyrotron oscillators offers an improved mode stability and the precise phase and frequency control of the generated millimeter-wave signal. It might offer completely new possibilities for applications related to nuclear fusion plasma, spectroscopy, and radar. In this presentation it is shown that the theory of Kurokawa can be applied to understand the injection locking of gyrotrons and that it provides accurate prediction of the locking behavior. Based on that, the investigation on injection locking of the EU 170 GHz 2 MW TE 34,19 -mode coaxial-cavity gyrotron using self-consistent single and multimode simulations is presented. Detailed studies on injection signals containing competing modes to account either for signal impurities or for deliberate injection of competing modes are presented

    The PELskin project: part II—investigating the physical coupling between flexible filaments in an oscillating flow

    Get PDF
    The fluid-structure interaction mechanisms of a coating composed of flexible flaps immersed in a periodically oscillating channel flow is here studied by means of numerical simulation, employing the Euler-Bernoulli equations to account for the flexibility of the structures. A set of passively actuated flaps have previously been demonstrated to deliver favourable aerodynamic impact when attached to a bluff body undergoing periodic vortex shedding. As such, the present configuration is identified to provide a useful test-bed to better understand this mechanism, thought to be linked to experimentally observed travelling waves. Having previously validated and elucidated the flow mechanism in Paper 1 of this series, we hereby undertake a more detailed analysis of spectra obtained for different natural frequency of structures and different configurations, in order to better characterize the mechanisms involved in the organized motion of the structures. Herein, this wave-like behaviour, observed at the tips of flexible structures via interaction with the fluid flow, is characterized by examining the time history of the filaments motion and the corresponding effects on the fluid flow, in terms of dynamics and frequency of the fluid velocity. Results indicate that the wave motion behaviour is associated with the formation of vortices in the gaps between the flaps, which itself are a function of the structural resistance to the cross flow. In addition, formation of vortices upstream of the leading and downstream of the trailing flap is seen, which interact with the formation of the shear-layer on top of the row. This leads to a phase shift in the wave-type motion along the row that resembles the observation in the cylinder case

    The PELskin project—part I: fluid–structure interaction for a row of flexible flaps: a reference study in oscillating channel flow

    Get PDF
    Previous studies of flexible flaps attached to the aft part of a cylinder have demonstrated a favourable effect on the drag and lift force fluctuation. This observation is thought to be linked to the excitation of travelling waves along the flaps and as a consequence of that, periodic shedding of the von Kármán vortices is altered in phase. A more general case of such interaction is studied herein for a limited row of flaps in an oscillating flow; representative of the cylinder case since the transversal flow in the wake-region shows oscillating character. This reference case is chosen to qualify recently developed numerical methods for the simulation of fluid–structure interaction in the context of the EU funded ‘PELskin’ project. The simulation of the two-way coupled dynamics of the flexible elements is achieved via a structure model for the flap motion, which was implemented and coupled to two different fluid solvers via the immersed boundary method. The results show the waving behaviour observed at the tips of the flexible elements in interaction with the fluid flow and the formation of vortices in the gaps between the flaps. In addition, formation of vortices upstream of the leading and downstream of the trailing flap is seen, which interact with the formation of the shear-layer on top of the row. This leads to a phase shift in the wave-type motion along the row that resembles the observation in the cylinder case
    corecore