3 research outputs found

    A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic

    No full text
    Abstract: The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from Ë‚LOD to 4.6 Ă— 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic. Graphic Abstract: [Figure not available: see fulltext.

    A systematic review of influenza virus in water environments across human, poultry, and wild bird habitats

    No full text
    Influenza, a highly contagious acute respiratory disease, remains a major global health concern. This study aimed to comprehensively assess the prevalence of influenza virus in different aquatic environments.Using 43 articles from four databases, we thoroughly examined water matrices from wastewater treatment plants (WTPs) and other human environments, as well as poultry habitats and areas frequented by migratory wild birds.In WTP influents (10 studies), positivity rates for influenza A ranged from 0.0 % to 97.6 %. For influenza B (8 studies), most studies reported no positivity, except for three studies reporting detection in 0.8 %, 5.6 %, and 46.9 % of samples. Within poultry habitats (13 studies), the prevalence of influenza A ranged from 4.3 % to 76.4 %, while in environments frequented by migratory wild birds (11 studies), it ranged from 0.4 % to 69.8 %. Geographically, the studies were distributed as follows: 39.5 % from the Americas, 18.6 % from Europe, 2.3 % from South-East Asia and 39.5 % from the Western Pacific.Several influenza A subtypes were found in water matrices, including avian influenza (H3N6, H3N8, H4N1, H4N2, H4N6, H4N8, H5N1, H5N8, H6N2, H6N6, H7N9, H0N8, and H11N9) and seasonal human influenza (H1N1 and H3N2). The existing literature indicates a crucial requirement for more extensive future research on this topic. Specifically, it emphasizes the need for method harmonization and delves into areas deserving of in-depth research, such as water matrices pertaining to pig farming and prevalence studies in low-income countries

    Systematic review and meta-analysis of the epidemiology of Lassa virus in humans, rodents and other mammals in sub-Saharan Africa

    No full text
    corecore