8 research outputs found

    Active microvalves for micro-fluidic networks in plastics - selecting suitable actuation schemes

    No full text
    Using active microvalves liquid flow in microsystems can be precisely controlled and timed. Plastic microfluidic networks offer high flexibility in the material selection and potentially also allow for low cost mass fabrication. For selecting a suitable micro-actuation scheme, the different options are compared on the basis of actuation performance parameters. For thermal-expansion, electrostatic, electroactive, piezoelectric and shape memory actuation principles the work density is derived from basic actuator physics and literature material parameters. For the targeted actuator dimensions also frequency, stroke and force characteristics are calculated. These are compared with actuator performance targets typical for micro-fluidic networks: forces between 160µN and 16mN, stroke of 50µm, repetition frequencies ranging from 100Hz to few mHz. As a result, only electroactive polymer and thermal actuation principles remain as viable options and shall in further work be experimentally evaluated using a modular design with interchangeable actuators

    A layered modular polymeric ÎĽ-valve suitable for lab-on-foil : design, fabrication, and characterization

    Get PDF
    Cost-effective fabrication of microfluidic networks require that all components have to be manufactured with up-scalable processes such as reel-to-reel fabrication of foil-based devices. A microvalve design must take into account functional requirements together with manufacturing feasibilities. Here we present the development of a modular polymeric laser structured microvalve. The complete valve structure is designed to be used in a bendable lab-in-foil system. The modular microvalve design consists of three layers: an actuator layer, an interfacing membrane, and a passive microchannel layer to be separately fabricated and then stacked. Different actuator layer concepts are compared out of which a thermal actuation scheme generating sufficient stroke using phase changing paraffin is chosen. The passive layer is designed with a shallow and sufficiently smooth spherical cavity that acts as the valve seat from which paraffin material can reliably retract during solidification. The shape and dimensions of the shallow cavity are derived from the natural membrane deflection and from the channel cross section. It is not essential that all the paraffin within the actuator cavity to be molten for valve closure allowing a high degree of assembly tolerance and inherent sealing of actuator cavity. All the module layers in the current prototype are structured using 3D laser fabrication processes but mass-fabrication methods like reel-to-reel hot-embossing are foreseen as well. A prototype microvalve stack was assembled with a thickness of 1.1 mm which could be further reduced to meet the requirements of extremely flexible lab-on-foil systems. The closed valve is tested up to a pressure of 3 kPa without any measurable leakage. The dynamics of valve closure is evaluated by a new optical characterization method based on image processing of color micrograph sequences taken from the transparent valve

    Active microvalves for micro-fluidic networks in plastics - selecting suitable actuation schemes

    No full text
    Using active microvalves liquid flow in microsystems can be precisely controlled and timed. Plastic microfluidic networks offer high flexibility in the material selection and potentially also allow for low cost mass fabrication. For selecting a suitable micro-actuation scheme, the different options are compared on the basis of actuation performance parameters. For thermal-expansion, electrostatic, electroactive, piezoelectric and shape memory actuation principles the work density is derived from basic actuator physics and literature material parameters. For the targeted actuator dimensions also frequency, stroke and force characteristics are calculated. These are compared with actuator performance targets typical for micro-fluidic networks: forces between 160µN and 16mN, stroke of 50µm, repetition frequencies ranging from 100Hz to few mHz. As a result, only electroactive polymer and thermal actuation principles remain as viable options and shall in further work be experimentally evaluated using a modular design with interchangeable actuators

    Stimulus-active polymer actuators for next-generation microfluidic devices

    No full text
    corecore