1,796 research outputs found

    Controlling the Size of Popcorn

    Full text link
    We present a thermo-statistical model of popcorn production and propose a way to control the final size of the popcorn by monitoring only the chamber pressure.Comment: 6 pages; revision (typo and minor content corrections

    Density Functional Theory of Hard Sphere Condensation Under Gravity

    Full text link
    The onset of condensation of hard spheres in a gravitational field is studied using density functional theory. In particular, we find that the local density approximation yields results identical to those obtained previously using the kinetic theory [Physica A 271, 192, (1999)], and a weighted density functional theory gives qualitatively similar results, namely, that the temperature at which condensation begins at the bottom scales linearly with weight, diameter, and number of layers of particles.Comment: 17 pages, 4 figure

    Student Affairs Professionals as Tempered Radicals: Lessons on Action and Advocacy

    Get PDF
    Modern universities are intricate organizations with many stakeholders each with their own goals and objectives. In a time of resource scarcity, student affairs professionals are tasked with advocating on behalf of their students, staffs, departments, and priorities against more solvent operations. Effective managers and administrators must align their priorities with other actors on campus and in accordance with institutional values. This study asked how professionals engage in the advocacy process, including the strategies that they use. Utilizing the tempered radicals perspective, this qualitative study was conducted through four interviews with experienced senior level student affairs professionals

    Luminaire layout: Design and implementation

    Get PDF
    The information contained in this report was presented during the discussion regarding guidelines for PAR uniformity in greenhouses. The data shows a lighting uniformity analysis in a research greenhouse for rose production at the Cornell University campus. The luminaire layout was designed using the computer program Lumen-Micro. After implementation of the design, accurate measurements were taken in the greenhouse and the uniformity analysis for both the design and implementation were compared. A study of several supplemental lighting installations resulted in the following recommendations: include only the actual growing area in the lighting uniformity analysis; for growing areas up to 20 square meters, take four measurements per square meter; for growing areas above 20 square meters, take one measurement per square meter; use one of the uniformity criteria and frequency graphs to compare lighting uniformity amongst designs; and design for uniformity criterion of a least 0.75 and the fraction within +/- 15% of the average PAR value should be close to one

    HIL real-time simulation of a digital fractional order PI controller for time delay processes

    Get PDF
    Fractional order control has been used extensively in the last decade for controlling various types of processes. Several design approaches have been proposed so far, the closed loop performance results obtained being tested using different simulation conditions. The hardware-in-the-loop (HIL) real-time simulation offers a more reliable method for evaluating the closed loop performance of such controllers prior to their actual implementation on the real processes, such HIL simulation being highly suitable especially for complex, hazardous processes in which human and equipment errors should be avoided. The present paper proposes a hardware-in-the-loop real-time simulation setting for a digital fractional order PI controller in a Smith Predictor structure. The designed control strategy and fractional order controller is then tested under nominal and uncertain conditions, considering a time delay process

    Monte Carlo Commissioning of Low Energy Electron Radiotherapy Beams using NXEGS Software

    Get PDF
    This work is a report on the commissioning of low energy electron beams of a medical linear accelerator for Monte Carlo dose calculation using NXEGS software (NXEGS version 1.0.10.0, NX Medical Software, LLC). A unique feature of NXEGS is automated commissioning, a process whereby a combination of analytic and Monte Carlo methods generates beam models from dosimetric data collected in a water phantom. This study uses NXEGS to commission 6, 9, and 12 MeV electron beams of a Varian Clinac 2100C using three applicators with standard inserts. Central axis depth-dose, primary axis and diagonal beam profiles, and output factors are the measurements necessary for commissioning of the code. We present a comparison of measured dose distributions with the distributions generated by NXEGS, using confidence limits on seven measures of error. We find that confidence limits are typically less than 3% or 3 mm, but increase with increasing source to surface distance (SSD) and depth at or beyond R(50). We also investigate the dependence of NXEGS' performance on the size and composition of data used to commission the program, finding a weak dependence on number of dose profiles in the data set, but finding also that commissioning data need be measured at only two SSDs

    Variational Approach to Hard Sphere Segregation Under Gravity

    Full text link
    It is demonstrated that the minimization of the free energy functional for hard spheres and hard disks yields the result that excited granular materials under gravity segregate not only in the widely known "Brazil nut" fashion, i.e. with the larger particles rising to the top, but also in reverse "Brazil nut" fashion. Specifically, the local density approximation is used to investigate the crossover between the two types of segregation occurring in the liquid state, and the results are found to agree qualitatively with previously published results of simulation and of a simple model based on condensation.Comment: 10 pages, 3 figure

    Comparisons of luminaires: Efficacies and system design

    Get PDF
    Lighting designs for architectural (aesthetic) purposes, vision and safety, and plant growth have many features in common but several crucial ones that are not. The human eye is very sensitive to the color (wavelength) of light, whereas plants are less so. There are morphological reactions, particularly to the red and blue portions of the light spectrum but, in general, plants appear to accept and use light for photosynthesis everywhere over the PAR region of the spectrum. In contrast, the human eye interprets light intensity on a logarithmic scale, making people insensitive to significant differences of light intensity. As a rough rule, light intensity must change by 30 to 50% for the human eye to recognize the difference. Plants respond much more linearly to light energy, at least at intensities below photosynthetic saturation. Thus, intensity differences not noticeable to the human eye can have significant effects on total plant growth and yield, and crop timing. These factors make luminaire selection and lighting system design particularly important when designing supplemental lighting systems for plant growth. Supplemental lighting for plant growth on the scale of commercial greenhouses is a relatively expensive undertaking. Light intensities are often much higher than required for task (vision) lighting, which increases both installation and operating costs. However, and especially in the northern regions of the United States (and Canada, Europe, etc.), supplemental lighting during winter may be necessary to produce certain crops (e.g., tomatoes) and very useful to achieve full plant growth potential and crop timing with most other greenhouse crops. Operating costs over the life of a luminaire typically will exceed the initial investment, making lighting efficacy a major consideration. This report reviews tests completed to evaluate the efficiencies of various commercially-available High-Pressure Sodium luminaires, and then describes the results of using a commercial lighting design computer program, Lumen-Micro, to explore how to place luminaires within greenhouses and plant growth chambers to achieve light (PAR) uniformity and relatively high lighting efficacies. Several suggestions are presented which could encourage systematic design of plant lighting systems

    On redundant topological constraints

    Full text link
    © 2015 Elsevier B.V. All rights reserved. Redundancy checking is an important task in the research of knowledge representation and reasoning. In this paper, we consider redundant qualitative constraints. For a set Γ of qualitative constraints, we say a constraint (xRy) in Γ is redundant if it is entailed by the rest of Γ. A prime subnetwork of Γ is a subset of Γ which contains no redundant constraints and has the same solution set as Γ. It is natural to ask how to compute such a prime subnetwork, and when it is unique. We show that this problem is in general intractable, but becomes tractable if Γ is over a tractable subalgebra S of a qualitative calculus. Furthermore, if S is a subalgebra of the Region Connection Calculus RCC8 in which weak composition distributes over nonempty intersections, then Γ has a unique prime subnetwork, which can be obtained in cubic time by removing all redundant constraints simultaneously from Γ. As a by-product, we show that any path-consistent network over such a distributive subalgebra is minimal and globally consistent in a qualitative sense. A thorough empirical analysis of the prime subnetwork upon real geographical data sets demonstrates the approach is able to identify significantly more redundant constraints than previously proposed algorithms, especially in constraint networks with larger proportions of partial overlap relations
    corecore