38,884 research outputs found

    Chemistry in Dense Molecular Clouds: Theory and Observational Constraints

    Get PDF
    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. We present a brief review of the basic assumptions and results of large scale modeling of the chemistry in dense molecular clouds. Particular attention will be paid to the influence of the gas phase ratios of the major elements in molecular clouds, and the likely role grains play in maintaining these ratios as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate "inventory" of the gas phase elemental budgets in different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, truly protostellar regions are only now becoming available for both experimental and theoretical study, and some of the expected modifications of molecular cloud chemistry in these sources are therefore outlined

    Terahertz Spectroscopy in the Lab and at Telescopes

    Get PDF
    The section of the electromagnetic spectrum extending roughly from wavelengths of 3 mm to 30 μm is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the upcoming deployments of the Herschel, ALMA, and SOFIA observatories promise to revolutionize our understanding of THz astrophysics. To fully realize this promise, however, it is essential that we achieve a quantitative experimental understanding of the dust, ice, and gas which make up the ISM. After outlining the tremendous impact that Tom Phillips has had on astronomical applications of THz radiation, this contribution will describe how emerging technologies in ultrafast lasers are enabling the development of integrated frequency- and time-domain THz facilities that can acquire high dynamic range optical constants of the major components that comprise astrophysical dust, ice and organics across the full wavelength region accessible to Herschel and other THz observatories

    High-Resolution 4.7 Micron Keck/NIRSPEC Spectroscopy of the CO Emission from the Disks Surrounding Herbig Ae Stars

    Get PDF
    We explore the high-resolution (λ/Δλ = 25,000; Δv = 12 km s^(-1)) M-band (4.7-5.1 μm) spectra of several disk-dominated Herbig Ae (HAe) systems: AB Aur, MWC 758, MWC 480, HD 163296, and VV Ser. All five objects show ^(12)CO v = 1-0 emission lines up to J = 42, but there is little or no evidence of moderate-J, v = 2-1 transitions despite their similar excitation energies. AB Aur shows ^(13)CO emission as well. The line/continuum ratios and intensity profiles are well correlated with inclination, and they trace collisionally driven emission from the inner disk (R_(th) ≾ 0.5-1 AU) as well as resonance fluorescence to much larger radii (R_(hν) ≾ 50-100 AU for J ≾ 10). The temperature, density, and radiation field profiles required to fit the CO emission are in good agreement with models of HAe disks derived from their spectral energy distributions. High-resolution and high dynamic range infrared spectroscopy of CO, and future observations of less abundant species, thus provide direct access to the physicochemical properties and surface structure of disks in regions where planet formation likely occurs

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM

    Circular 87

    Get PDF
    High rates of female breeding success and offspring survival are the two major factors in productivity of any commercial livestock industry. To im prove breeding success and offspring survival, the herd m anager will establish selection criteria and choose which males and females will breed. The genetics or characteristics of future animals will reflect their parentage. Selection pressure is evident in both wild and captive populations of herbivores. Predators, environment, and human harvest strategies are a few forces which influence the characteristics of freeranging populations of reindeer, caribou, moose, wapiti, etc. In livestock production systems, herd managers often breed for specific characteristics such as larger body size, high birth and growth rates, leanness, etc. A single color or combination of colors has been another characteristic often selected by purebred cattle producers as well as reindeer herders

    Direct measurement of the HCl dimer tunneling rate and Cl isotope dependence by far-infrared laser sideband spectroscopy of planar supersonic jets

    Get PDF
    The large amplitude tunneling motion of the HCl dimer has been directly studied with a tunable far‐infrared laser sideband/two-dimensional free jet expansion spectrometer at hyperfine resolution. Rotationless tunneling rates for the three common chlorine isotopic forms are v(35–35)=463 979.2(1) MHz, v(35–37)=463 357.7(1) MHz, and v(37–37)=462 733.7(3) MHz. Both the rotational constants and hyperfine parameters indicate that the vibrationally averaged structure shows little variation within a given tunneling state, with both HCl bond angles giving an average projection on the a-axis of 47° in all states with resolved hyperfine patterns

    Methane Abundance Variations toward the Massive Protostar NGC 7538 : IRS9

    Get PDF
    Absorption and emission lines originating from the nu3 C-H stretching manifold of gas phase CH4 were discovered in the high resolution (R=25,000) infrared L band spectrum along the line of sight toward NGC 7538 : IRS9. These observations provide a diagnostic of the complex dynamics and chemistry in a massive star forming region. The line shapes resemble P Cygni profiles with the absorption and emission components shifted by ~7 km/s with respect to the systemic velocity. Similar velocity components were observed in CO at 4.7 um, but in contrast to CH4, the CO shows deep absorption due to a high velocity outflow as well as absorption at the systemic velocity due to the cold outer envelope. It is concluded that the gas phase CH4 abundance varies by an order of magnitude in this line of sight: it is low in the envelope and the outflow (X[CH4]<0.4e-6), and at least a factor of 10 larger in the central core. The discovery of solid CH4 in independent ground and space based data sets shows that methane is nearly entirely frozen onto grains in the envelope. It thus appears that CH4 is formed by grain surface reactions, evaporates into the gas phase in the warm inner regions of protostellar cores and is efficiently destroyed in shocks related to outflows.Comment: Scheduled for publication in ApJ 615, 01 Nov. 2004. 11 page
    corecore