126 research outputs found
Mode-Field Radius of Photonic Crystal Fibers Expressed by the V-parameter
We numerically calculate the equivalent mode-field radius of the fundamental
mode in a photonic crystal fiber (PCF) and show that this is a function of the
V-parameter only and not the relative hole size. This dependency is similar to
what is found for graded-index standard fibers and we furthermore show that the
relation for the PCF can be excellently approximated with the same general
mathematical expression. This is to our knowledge the first semi-analytical
description of the mode-field radius of a PCF.Comment: Accepted for Opt. Let
Predicting macrobending loss for large-mode area photonic crystal fibers
We report on an easy-to-evaluate expression for the prediction of the
bend-loss for a large mode area photonic crystal fiber (PCF) with a triangular
air-hole lattice. The expression is based on a recently proposed formulation of
the V-parameter for a PCF and contains no free parameters. The validity of the
expression is verified experimentally for varying fiber parameters as well as
bend radius. The typical deviation between the position of the measured and the
predicted bend loss edge is within measurement uncertainty.Comment: Accepted for Optics Expres
Low-loss criterion and effective area considerations for photonic crystal fibers
We study the class of endlessly single-mode all-silica photonic crystal
fibers with a triangular air-hole cladding. We consider the sensibility to
longitudinal nonuniformities and the consequences and limitations for realizing
low-loss large-mode area photonic crystal fibers. We also discuss the
dominating scattering mechanism and experimentally we confirm that both macro
and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic
Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports
We demonstrate a new class of hollow-core Bragg fibers that are composed of
concentric cylindrical silica rings separated by nanoscale support bridges. We
theoretically predict and experimentally observe hollow-core confinement over
an octave frequency range. The bandwidth of bandgap guiding in this new class
of Bragg fibers exceeds that of other hollow-core fibers reported in the
literature. With only three rings of silica cladding layers, these Bragg fibers
achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure
Efficient interface conditions for the semi-vectorial finite-difference beam propagation method
Efficient interface conditions (EICs) are derived for the propagation equation using the slowly varying envelope approximation for the dominant electric field component. At the interface between two different media, the two lateral second derivatives in the discretized propagation equation are adapted such that the discretized modal field equation is correct up to second order in the lateral grid spacing. Since the error term is then of the order of the lateral grid spacing, our EICs are first-order EICs. These interface conditions are compared with well-known zero-order EICs derived by Stern and Kim and Ramaswamy. It is shown that the first-order EICs yield faster convergence to the exact effective index value as the lateral grid spacing is decreased than do the zero-order EICs. It turns out that our EICs are very much like those derived by Vassallo. Using essentially the same method, he derived EICs of second and first order for the field component respectively parallel and perpendicular, to the interface. Hence the accuracy of his EICs is one order higher for the field component parallel to the interface, although it introduces an extra asymmetry in the propagation matrix
- …