5 research outputs found

    Singlet molecular oxygen regulates vascular tone and blood pressure in inflammation

    Get PDF
    Singlet molecular oxygen (O-1(2)) has well-established roles in photosynthetic plants, bacteria and fungi(1-3), but not in mammals. Chemically generated O-1(2) oxidizes the amino acid tryptophan to precursors of a key metabolite called N-formylkynurenine(4), whereas enzymatic oxidation of tryptophan to N-formylkynurenine is catalysed by a family of dioxygenases, including indoleamine 2,3-dioxygenase 1(5). Under inflammatory conditions, this haem-containing enzyme is expressed in arterial endothelial cells, where it contributes to the regulation of blood pressure(6). However, whether indoleamine 2,3-dioxygenase 1 forms O-1(2) and whether this contributes to blood pressure control have remained unknown. Here we show that arterial indoleamine 2,3-dioxygenase 1 regulates blood pressure via formation of O-1(2). We observed that in the presence of hydrogen peroxide, the enzyme generates O-1(2) and that this is associated with the stereoselective oxidation of L-tryptophan to a tricyclic hydroperoxide via a previously unrecognized oxidative activation of the dioxygenase activity. The tryptophan-derived hydroperoxide acts in vivo as a signalling molecule, inducing arterial relaxation and decreasing blood pressure; this activity is dependent on Cys42 of protein kinase G1 alpha. Our findings demonstrate a pathophysiological role for O-1(2) in mammals through formation of an amino acid-derived hydroperoxide that regulates vascular tone and blood pressure under inflammatory conditions
    corecore