314 research outputs found

    Monopole Inflation in Brans-Dicke Theory

    Full text link
    According to previous work, topological defects expand exponentially without an end if the vacuum expectation value of the Higgs field is of the order of the Planck mass. We extend the study of inflating topological defects to the Brans-Dicke gravity. With the help of numerical simulation we investigate the dynamics and spacetime structure of a global monopole. Contrary to the case of the Einstein gravity, any inflating monopole eventually shrinks and takes a stable configuration. We also discuss cosmological constraints on the model parameters.Comment: 17 pages, revtex, including figures, discussions in more general theories are added, to appear in Phys. Rev.

    Constraints on Inflation in Einstein-Brans-Dicke Frame

    Full text link
    The density perturbation during inflation seeds the large scale structure. We consider both new inflation-type and chaotic inflation-type potentials in the framework of Einstein-Brans-Dicke gravity. The density perturbation gives strong constraints on the parameters in these potentials. For both potentials, the constraints are not much different from those obtained in the original inflationary models by using of Einstein gravity.Comment: 6 pages, Revtex file, typos adde

    Non-Abelian Black Holes in Brans-Dicke Theory

    Get PDF
    We find a black hole solution with non-Abelian field in Brans-Dicke theory. It is an extension of non-Abelian black hole in general relativity. We discuss two non-Abelian fields: "SU(2)" Yang-Mills field with a mass (Proca field) and the SU(2)Ă—\timesSU(2) Skyrme field. In both cases, as in general relativity, there are two branches of solutions, i.e., two black hole solutions with the same horizon radius. Masses of both black holes are always smaller than those in general relativity. A cusp structure in the mass-horizon radius (MgM_{g}-rhr_{h}) diagram, which is a typical symptom of stability change in catastrophe theory, does not appear in the Brans-Dicke frame but is found in the Einstein conformal frame. This suggests that catastrophe theory may be simply applied for a stability analysis as it is if we use the variables in the Einstein frame. We also discuss the effects of the Brans-Dicke scalar field on black hole structure.Comment: 31 pages, revtex, 21 figure

    Extended Inflation with a Curvature-Coupled Inflaton

    Full text link
    We examine extended inflation models enhanced by the addition of a coupling between the inflaton field and the space-time curvature. We examine two types of model, where the underlying inflaton potential takes on second-order and first-order form respectively. One aim is to provide models which satisfy the solar system constraints on the Brans--Dicke parameter ω\omega. This constraint has proven very problematic in previous extended inflation models, and we find circumstances where it can be successfully evaded, though the constraint must be carefully assessed in our model and can be much stronger than the usual ω>500\omega > 500. In the simplest versions of the model, one may avoid the need to introduce a mass for the Brans--Dicke field in order to ensure that it takes on the correct value at the present epoch, as seems to be required in hyperextended inflation. We also briefly discuss aspects of the formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D, mishandling of the solar system constraint on extended gravity theories corrected, SUSSEX-AST 93/6-

    Pair Creation of Dilaton Black Holes in Extended Inflation

    Get PDF
    Dilatonic Charged Nariai instantons mediate the nucleation of black hole pairs during extended chaotic inflation. Depending on the dilaton and inflaton fields, the black holes are described by one of two approximations in the Lorentzian regime. For each case we find Euclidean solutions that satisfy the no boundary proposal. The complex initial values of the dilaton and inflaton are determined, and the pair creation rate is calculated from the Euclidean action. Similar to standard inflation, black holes are abundantly produced near the Planck boundary, but highly suppressed later on. An unusual feature we find is that the earlier in inflation that the dilatonic black holes are created, the more highly charged they can be.Comment: 23 pages, LaTeX, 6 figures; submitted to Phys. Rev.

    A dynamical stabilization of the radion potential

    Full text link
    Large extra dimensional theories attempt to solve the hierarchy problem by assuming that the fundamental scale of the theory is at the electroweak scale. This requires the size of the extra dimensions to be stabilized at a scale which is determined by the effective four dimensional Planck mass and the number of extra dimensions. In this paper we concentrate upon the dynamical reasons to stabilize them by providing a running mass to the radion field. We show that it is possible to maintain the size of the extra dimensions once it is stabilized throughout the dynamics of inflation.Comment: 5 pages. LaTeX file, no figures. Minor changes, typos correcte

    Higher-Derivative Quantum Cosmology

    Full text link
    The quantum cosmology of a higher-derivative derivative gravity theory arising from the heterotic string effective action is reviewed. A new type of Wheeler-DeWitt equation is obtained when the dilaton is coupled to the quadratic curvature terms. Techniques for solving the Wheeler-DeWitt equation with appropriate boundary conditions shall be described, and implications for semiclassical theories of inflationary cosmology will be outlined.Comment: 11 pages TeX. A term has been removed from equation (13

    Integrable Multicomponent Perfect Fluid Multidimensional Cosmology II: Scalar Fields

    Get PDF
    We consider anisotropic cosmological models with an universe of dimension 4 or more, factorized into n>1 Ricci-flat spaces, containing an m-component perfect fluid of m non-interacting homogeneous minimally coupled scalar fields under special conditions. We describe the dynamics of the universe: It has a Kasner-like behaviour near the singularity and isotropizes during the expansion to infinity. Some of the considered models are integrable, and classical as well as quantum solutions are found. Some solutions produce inflation from "nothing". There exist classical asymptotically anti-de Sitter wormholes, and quantum wormholes with discrete spectrum.Comment: 28 pages, LaTeX, subm. to Gen. Rel. Gra
    • …
    corecore