677 research outputs found

    Imaging the deep structure of the San Andreas Fault south of Hollister with joint analysis of fault zone head and direct P arrivals

    Get PDF
    Author Posting. © Blackwell, 2007. This article is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 169 (2007): 1028–1042, doi:10.1111/j.1365-246X.2006.03319.x.We perform a joint inversion of arrival time data generated by direct P and fault zone (FZ) head waves in the San Andreas Fault south of Hollister, CA, to obtain a high-resolution local velocity structure. The incorporation of head waves allows us to obtain a sharp image of the overall velocity contrast across the fault as a function of depth, while the use of near-fault data allows us to resolve internal variations in the FZ structure. The data consist of over 9800 direct P and over 2700 head wave arrival times from 450 events at up to 54 stations of a dense temporary seismic array and the permanent northern California seismic network in the area. One set of inversions is performed upon the whole data set, and five inversion sets are performed on various data subsets in an effort to resolve details of the FZ structure. The results imply a strong contrast of P-wave velocities across the fault of ~50 per cent in the shallow section, and lower contrasts of 10–20 per cent below 3 km, with the southwest being the side with faster velocities. The presence of a shallow low velocity zone around the fault, which could corresponds to the damage structures imaged in trapped wave studies, is detected by inversions using subsets of the data made up of only stations close to the fault. The faster southwest side of the fault shows the development of a shallow low velocity FZ layer in inversions using instruments closer and closer to the fault (<5 and <2 km). Such a feature is not present in results of inversions using only stations at greater distances from the fault. On the slower northeast side of the fault, the presence of a low velocity shallow layer is only detected in the inversions using the stations within 2 km of the fault. We interpret this asymmetry across the fault as a possible indication of a preferred propagation direction of earthquake ruptures in the region. Using events from different portions of the fault, the head wave inversions also resolve small-scale features of the fault visible in the surface geology and relocated seismicity

    On-demand or Spot? Selling the cloud to risk-averse customers

    Full text link
    In Amazon EC2, cloud resources are sold through a combination of an on-demand market, in which customers buy resources at a fixed price, and a spot market, in which customers bid for an uncertain supply of excess resources. Standard market environments suggest that an optimal design uses just one type of market. We show the prevalence of a dual market system can be explained by heterogeneous risk attitudes of customers. In our stylized model, we consider unit demand risk-averse bidders. We show the model admits a unique equilibrium, with higher revenue and higher welfare than using only spot markets. Furthermore, as risk aversion increases, the usage of the on-demand market increases. We conclude that risk attitudes are an important factor in cloud resource allocation and should be incorporated into models of cloud markets.Comment: Appeared at WINE 201

    Statistics of Earthquakes in Simple Models of Heterogeneous Faults

    Full text link
    Simple models for ruptures along a heterogeneous earthquake fault zone are studied, focussing on the interplay between the roles of disorder and dynamical effects. A class of models are found to operate naturally at a critical point whose properties yield power law scaling of earthquake statistics. Various dynamical effects can change the behavior to a distribution of small events combined with characteristic system size events. The studies employ various analytic methods as well as simulations.Comment: 4 pages, RevTex, 3 figures (eps-files), uses eps

    Universal mean moment rate profiles of earthquake ruptures

    Full text link
    Earthquake phenomenology exhibits a number of power law distributions including the Gutenberg-Richter frequency-size statistics and the Omori law for aftershock decay rates. In search for a basic model that renders correct predictions on long spatio-temporal scales, we discuss results associated with a heterogeneous fault with long range stress-transfer interactions. To better understand earthquake dynamics we focus on faults with Gutenberg-Richter like earthquake statistics and develop two universal scaling functions as a stronger test of the theory against observations than mere scaling exponents that have large error bars. Universal shape profiles contain crucial information on the underlying dynamics in a variety of systems. As in magnetic systems, we find that our analysis for earthquakes provides a good overall agreement between theory and observations, but with a potential discrepancy in one particular universal scaling function for moment-rates. The results reveal interesting connections between the physics of vastly different systems with avalanche noise.Comment: 13 pages, 5 figure

    Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults

    Full text link
    The statistics of earthquakes in a heterogeneous fault zone is studied analytically and numerically in the mean field version of a model for a segmented fault system in a three-dimensional elastic solid. The studies focus on the interplay between the roles of disorder, dynamical effects, and driving mechanisms. A two-parameter phase diagram is found, spanned by the amplitude of dynamical weakening (or ``overshoot'') effects (epsilon) and the normal distance (L) of the driving forces from the fault. In general, small epsilon and small L are found to produce Gutenberg-Richter type power law statistics with an exponential cutoff, while large epsilon and large L lead to a distribution of small events combined with characteristic system-size events. In a certain parameter regime the behavior is bistable, with transitions back and forth from one phase to the other on time scales determined by the fault size and other model parameters. The implications for realistic earthquake statistics are discussed.Comment: 21 pages, RevTex, 6 figures (ps, eps

    Molecular Dynamics Simulations of Weak Detonations

    Get PDF
    Detonation of a three-dimensional reactive non-isotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal.Comment: 38 pages, 20 figures. Submitted to Physical Review

    Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.)

    Get PDF
    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an “anti-gametocidal” wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes
    corecore