867 research outputs found
Combining environmental DNA and visual surveys can inform conservation planning for coral reefs
Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia’s hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation plannin
Splitting It Up: The spduration Split-Population Duration Regression Package for Time-Varying Covariates
We present an implementation of split-population duration regression in the spduration
(Beger et al., 2017) package for R that allows for time-varying covariates. The statistical model accounts
for units that are immune to a certain outcome and are not part of the duration process the researcher
is primarily interested in. We provide insights for when immune units exist, that can significantly
increase the predictive performance compared to standard duration models. The package includes
estimation and several post-estimation methods for split-populationWeibull and log-logistic models.
We provide an empirical application to data on military coups
First confirmed occurrence of Codium fragile (Suringar) Hariot in the Iberian Peninsula coast of Portugal
Invasive macroalgae represent a major threat to marine ecosystems worldwide. Codium fragile ssp. fragile is one of the most invasive species in the world. The species has deleterious impacts on marine ecosystems, but can also coexist with other Codium congeners, with neutral impact. Several invasive macroalgae have been described to occur along the west coast of the Iberian Peninsula, including C. fragile. However, despite its presence being noted in citizen science surveys, the occurrence of C. fragile on the coast of Portugal was not confirmed (except in the Azores Islands). The cryptic nature of this invasive macroalga has led to several misidentifications, and strict taxonomic approaches must therefore be used to confirm sightings. Previous intensive field sampling (2017–2018) aimed at recording the presence of different macroalgae did not find C. fragile along the Portuguese coast, northwards from Praia do Matadouro. Here, we report the first confirmed record of C. fragile on the coast of Portugal, in the Avencas Marine Park. Identification of the alga was confirmed by microscopic examination of the utricles. Early detection of invasive species is essential, and further research should be carried out in the surrounding areas in order to better understand the invasion pathways to enable correct application of management plans
Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect
1. Globally, protected areas are being established to protect biodiversity and to promote ecosystem resilience. The typical spatial conservation planning process leading to the creation of these protected areas focuses on representation and replication of ecological features, often using decision support tools such as Marxan. Yet, despite the important role ecological connectivity has in metapopulation persistence and resilience, Marxan currently requires manual input or specialized scripts to explicitly consider connectivity.
2. ‘Marxan Connect’ is a new open source, open access Graphical User Interface (GUI) tool designed to assist conservation planners with the appropriate use of data on ecological connectivity in protected area network planning.
3. Marxan Connect can facilitate the use of estimates of demographic connectivity (e.g. derived from animal tracking data, dispersal models, or genetic tools) or structural landscape connectivity (e.g. isolation by resistance). This is accomplished by calculating metapopulation‐relevant connectivity metrics (e.g. eigenvector centrality) and treating those as conservation features or by including the connectivity data as a spatial dependency amongst sites in the prioritization process.
4. Marxan Connect allows a wide group of users to incorporate directional ecological connectivity into conservation planning with Marxan. The solutions provided by Marxan Connect, combined with ecologically relevant post‐hoc testing, are more likely to support persistent and resilient metapopulations (e.g. fish stocks) and provide better protection for biodiversity
Infected Necrosis in Severe Pancreatitis - Combined Nonsurgical Multi-Drainage with Directed Transabdominal High-Volume Lavage in Critically Ill Patients
Background: Infection of pancreatic necrosis is a life-threatening complication during the course of acute pancreatitis. In critically ill patients, surgical or extended endoscopic interventions are associated with high morbidity and mortality. Minimally invasive procedures on the other hand are often insufficient in patients suffering from large necrotic areas containing solid or purulent material. We present a strategy combining percutaneous and transgastric drainage with continuous high-volume lavage for treatment of extended necroses and liquid collections in a series of patients with severe acute pancreatitis. Patients and Methods: Seven consecutive patients with severe acute pancreatitis and large confluent infected pancreatic necrosis were enrolled. In all cases, the first therapeutic procedure was placement of a CT-guided drainage catheter into the fluid collection surrounding peripancreatic necrosis. Thereafter, a second endosonographically guided drainage was inserted via the gastric or the duodenal wall. After communication between the separate drains had been proven, an external to internal directed high-volume lavage with a daily volume of 500 ml up to 2,000 ml was started. Results: In all patients, pancreatic necrosis/liquid collections could be resolved completely by the presented regime. No patient died in the course of our study. After initiation of the directed high-volume lavage, there was a significant clinical improvement in all patients. Double drainage was performed for a median of 101 days, high-volume lavage for a median of 41 days. Several endoscopic interventions for stent replacement were required (median 8). Complications such as bleeding or perforation could be managed endoscopically, and no subsequent surgical therapy was necessary. All patients could be dismissed from the hospital after a median duration of 78 days. Conclusion: This approach of combined percutaneous/endoscopic drainage with high-volume lavage shows promising results in critically ill patients with extended infected pancreatic necrosis and high risk of surgical intervention. Neither surgical nor endoscopic necrosectomy was necessary in any of our patients. Copyright (C) 2009 S. Karger AG, Basel and IA
Evolving coral reef conservation with genetic information
Targeted conservation and management programs are crucial for mitigating anthropogenic threats to declining biodiversity. Although evolutionary processes underpin extant patterns of biodiversity, it is uncommon for resource managers to explicitly consider genetic data in conservation prioritization. Genetic information is inherently relevant to management because it describes genetic diversity, population connectedness, and evolutionary history; thereby typifying their behavioral traits, physiological climate tolerance, evolutionary potential, and dispersal ability. Incorporating genetic information into spatial conservation prioritization starts with reconciling the terminology and techniques used in genetics and conservation science. Genetic data vary widely in analyses and their interpretations can be challenging even for experienced geneticists. Therefore, identifying objectives, decision rules, and implementations in decision support tools specifically for management using genetic data is challenging. Here, we outline a framework for eight genetic system characteristics, their measurement, and how they could be incorporated in spatial conservation prioritization for two contrasting objectives: biodiversity preservation vs maintaining ecological function and sustainable use. We illustrate this framework with an example using data from Tridacna crocea (Lamarck, 1819) (boring giant clam) in the Coral Triangle. We find that many reefs highlighted as conservation priorities with genetic data based on genetic subregions, genetic diversity, genetic distinctness, and connectivity are not prioritized using standard practices. Moreover, different characteristics calculated from the same samples resulted in different spatial conservation priorities. Our results highlight that omitting genetic information from conservation decisions may fail to adequately represent processes regulating biodiversity, but that conservation objectives related to the choice of genetic system characteristics require careful consideration
Primary synovial chondromatosis: an elemental investigation of a rare skeletal pathology
Background: Primary synovial chondromatosis (PSC) is a rare idiopathic pathology characterized by the formation of osseocartilaginous nodules within synovial joints, tendons, or bursae. The mineralization pattern of PSC nodules is poorly understood and has yet to be investigated using elemental analysis. Mapping this pattern could elucidate the progression of the disease.
Materials and methods: PSC nodules discovered during dissection of a formalin fixed donor were analyzed. Scanning electron microscopy paired with energy dispersive X-ray spectroscopy (SEM-EDS) was used to quantify calcium and phosphorus levels to distinguish mineralized components from cartilage, indicated by increased carbon and oxygen concentrations.
Results: Nine nodules with average dimensions 1.76cm x 1.25cm were identified in the semimembranosus bursa. SEM-EDS demonstrated increased calcium phosphate levels in nodular cores, while outer margins contained primarily carbon and oxygen. Quantification of these elements revealed nodular peripheries to contain 68.0% carbon, 30.2% oxygen, 0.8% calcium, and 1.0% phosphate, while cores were comprised of 38.1% carbon, 42.1% oxygen, 14.1% calcium, and 5.7% phosphate.
Conclusions: Nodules were found to have mineralized cores embedded within a cartilaginous matrix. This pattern suggests disease progression is facilitated by endochondral ossification, opening the potential for new therapeutic techniques
- …