767 research outputs found

    On the relative strengths of fragments of collection

    Full text link
    Let M\mathbf{M} be the basic set theory that consists of the axioms of extensionality, emptyset, pair, union, powerset, infinity, transitive containment, Δ0\Delta_0-separation and set foundation. This paper studies the relative strength of set theories obtained by adding fragments of the set-theoretic collection scheme to M\mathbf{M}. We focus on two common parameterisations of collection: Πn\Pi_n-collection, which is the usual collection scheme restricted to Πn\Pi_n-formulae, and strong Πn\Pi_n-collection, which is equivalent to Πn\Pi_n-collection plus ÎŁn+1\Sigma_{n+1}-separation. The main result of this paper shows that for all n≄1n \geq 1, (1) M+Πn+1-collection+ÎŁn+2-induction on ω\mathbf{M}+\Pi_{n+1}\textrm{-collection}+\Sigma_{n+2}\textrm{-induction on } \omega proves the consistency of Zermelo Set Theory plus Πn\Pi_{n}-collection, (2) the theory M+Πn+1-collection\mathbf{M}+\Pi_{n+1}\textrm{-collection} is Πn+3\Pi_{n+3}-conservative over the theory M+strong Πn-collection\mathbf{M}+\textrm{strong }\Pi_n \textrm{-collection}. It is also shown that (2) holds for n=0n=0 when the Axiom of Choice is included in the base theory. The final section indicates how the proofs of (1) and (2) can be modified to obtain analogues of these results for theories obtained by adding fragments of collection to a base theory (Kripke-Platek Set Theory with Infinity and V=LV=L) that does not include the powerset axiom.Comment: 22 page

    Dependence Logic with Generalized Quantifiers: Axiomatizations

    Full text link
    We prove two completeness results, one for the extension of dependence logic by a monotone generalized quantifier Q with weak interpretation, weak in the meaning that the interpretation of Q varies with the structures. The second result considers the extension of dependence logic where Q is interpreted as "there exists uncountable many." Both of the axiomatizations are shown to be sound and complete for FO(Q) consequences.Comment: 17 page

    Rich Situated Attitudes

    Get PDF
    We outline a novel theory of natural language meaning, Rich Situated Semantics [RSS], on which the content of sentential utterances is semantically rich and informationally situated. In virtue of its situatedness, an utterance’s rich situated content varies with the informational situation of the cognitive agent interpreting the utterance. In virtue of its richness, this content contains information beyond the utterance’s lexically encoded information. The agent-dependence of rich situated content solves a number of problems in semantics and the philosophy of language (cf. [14, 20, 25]). In particular, since RSS varies the granularity of utterance contents with the interpreting agent’s informational situation, it solves the problem of finding suitably fine- or coarse-grained objects for the content of propositional attitudes. In virtue of this variation, a layman will reason with more propositions than an expert

    Logics of Finite Hankel Rank

    Full text link
    We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is CFOL, first order logic with modular counting quantifiers. For sum-like operations it is CMSOL, the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.Comment: Appeared in YuriFest 2015, held in honor of Yuri Gurevich's 75th birthday. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23534-9_1

    On the Cognition of States of Affairs

    Get PDF
    The theory of speech acts put forward by Adolf Reinach in his "The A Priori Foundations of the Civil Law" of 1913 rests on a systematic account of the ontological structures associated with various different sorts of language use. One of the most original features of Reinach's account lies in hIs demonstration of how the ontological structure of, say, an action of promising or of commanding, may be modified in different ways, yielding different sorts of non-standard instances of the corresponding speech act varieties. The present paper is an attempt to apply this idea of standard and modified instances of ontological structures to the realm of judgement and cognition, and thereby to develop a Reinachian theory of how intentionality is mediated through language in acts of thinking and speaking

    Investigating diagrammatic reasoning with deep neural networks

    Get PDF
    Diagrams in mechanised reasoning systems are typically en- coded into symbolic representations that can be easily processed with rule-based expert systems. This relies on human experts to define the framework of diagram-to-symbol mapping and the set of rules to reason with the symbols. We present a new method of using Deep artificial Neu- ral Networks (DNN) to learn continuous, vector-form representations of diagrams without any human input, and entirely from datasets of dia- grammatic reasoning problems. Based on this DNN, we developed a novel reasoning system, Euler-Net, to solve syllogisms with Euler diagrams. Euler-Net takes two Euler diagrams representing the premises in a syl- logism as input, and outputs either a categorical (subset, intersection or disjoint) or diagrammatic conclusion (generating an Euler diagram rep- resenting the conclusion) to the syllogism. Euler-Net can achieve 99.5% accuracy for generating syllogism conclusion. We analyse the learned representations of the diagrams, and show that meaningful information can be extracted from such neural representations. We propose that our framework can be applied to other types of diagrams, especially the ones we don’t know how to formalise symbolically. Furthermore, we propose to investigate the relation between our artificial DNN and human neural circuitry when performing diagrammatic reasoning

    Adding an Abstraction Barrier to ZF Set Theory

    Get PDF
    Much mathematical writing exists that is, explicitly or implicitly, based on set theory, often Zermelo-Fraenkel set theory (ZF) or one of its variants. In ZF, the domain of discourse contains only sets, and hence every mathematical object must be a set. Consequently, in ZF, with the usual encoding of an ordered pair ⟹a,b⟩{\langle a, b\rangle}, formulas like {a}∈⟹a,b⟩{\{a\} \in \langle a, b \rangle} have truth values, and operations like P(⟹a,b⟩){\mathcal P (\langle a, b\rangle)} have results that are sets. Such 'accidental theorems' do not match how people think about the mathematics and also cause practical difficulties when using set theory in machine-assisted theorem proving. In contrast, in a number of proof assistants, mathematical objects and concepts can be built of type-theoretic stuff so that many mathematical objects can be, in essence, terms of an extended typed λ{\lambda}-calculus. However, dilemmas and frustration arise when formalizing mathematics in type theory. Motivated by problems of formalizing mathematics with (1) purely set-theoretic and (2) type-theoretic approaches, we explore an option with much of the flexibility of set theory and some of the useful features of type theory. We present ZFP: a modification of ZF that has ordered pairs as primitive, non-set objects. ZFP has a more natural and abstract axiomatic definition of ordered pairs free of any notion of representation. This paper presents axioms for ZFP, and a proof in ZF (machine-checked in Isabelle/ZF) of the existence of a model for ZFP, which implies that ZFP is consistent if ZF is. We discuss the approach used to add this abstraction barrier to ZF
    • 

    corecore