3,356 research outputs found

    The string tension in SU(N) gauge theory from a careful analysis of smearing parameters

    Get PDF
    We report a method to select optimal smearing parameters before production runs and discuss the advantages of this selection for the determination of the string tension.Comment: Contribution to Lat97 poster session, title was 'How to measure the string tension', 3 pages, 5 colour eps figure

    Evolution of FLRW spacetime after the birth of a cosmic string

    Full text link
    We consider the evolution of an initially FLRW universe after the formation of a long, straight, cosmic string with arbitrary tension and mass per unit length. The birth of the string sources scalar and tensor-type perturbations in the background metric and both density and velocity perturbations in the background fluid, which compensate for the string mass and maintain energy conservation. The former generate the deficit angle within the light cone of the string and a gravitational shock front at the cosmological horizon, whereas the latter are confined within the sound cone. We study the properties of the metric within each region of the resulting spacetime and give the explicit coordinate transformations which demonstrate non-violation of causality. This paper generalizes the work of previous studies for the Nambu-Goto string.Comment: 16 pages, 2 figures, published versio

    Nucleation of quark matter bubbles in neutron stars

    Full text link
    The thermal nucleation of quark matter bubbles inside neutron stars is examined for various temperatures which the star may realistically encounter during its lifetime. It is found that for a bag constant less than a critical value, a very large part of the star will be converted into the quark phase within a fraction of a second. Depending on the equation of state for neutron star matter and strange quark matter, all or some of the outer parts of the star may subsequently be converted by a slower burning or a detonation.Comment: 13 pages, REVTeX, Phys.Rev.D (in press), IFA 93-32. 5 figures (not included) available upon request from [email protected]

    Flux tube delocalization at the deconfinement point

    Full text link
    We study the behaviour of the flux tube thickness in the vicinity of the deconfinement transition. We show, using effective string methods, that in this regime the square width increases linearly and not logarithmically with the interquark distance. The amplitude of this linear growth is an increasing function of the temperature and diverges as the deconfinement transition is approached from below. These predictions are in good agreement with a set of simulations performed in the 3d gauge Ising model.Comment: 16 pages, 1 figure. Revised version, with an improved discussion of the dimensional reduction approach. Accepted for publication in JHE

    Stabilizing single atom contacts by molecular bridge formation

    Get PDF
    Gold-molecule-gold junctions can be formed by carefully breaking a gold wire in a solution containing dithiolated molecules. Surprisingly, there is little understanding on the mechanical details of the bridge formation process and specifically on the role that the dithiol molecules play themselves. We propose that alkanedithiol molecules have already formed bridges between the gold electrodes before the atomic gold-gold junction is broken. This leads to stabilization of the single atomic gold junction, as observed experimentally. Our data can be understood within a simple spring model.Comment: 14 pages, 3 figures, 1 tabl

    Strongly nonlinear dynamics of electrolytes in large ac voltages

    Get PDF
    We study the response of a model micro-electrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two novel features - significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasi-equilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination", since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.Comment: 30 pages, 17 eps-figures, RevTe

    Magnetic Fields from Phase Transitions

    Get PDF
    The generation of primordial magnetic fields from cosmological phase transitions is discussed, paying particular attention to the electroweak transition and to the various definitions of the `average' field that have been put forward. It is emphasised that only the volume average has dynamical significance as a seed for galactic dynamos. On rather general grounds of causality and energy conservation, it is shown that, in the absence of MHD effects that transfer power in the magnetic field from small to large scales, processes occurring at the electroweak transition cannot generate fields stronger than 102010^{-20} Gauss on a scale of 0.5 Mpc. However, it is implausible that this upper bound could ever be reached, as it would require all the energy in the Universe to be turned into a magnetic field coherent at the horizon scale. Non-linear MHD effects seem therefore to be necessary if the electroweak transition is to create a primordial seed field.Comment: 6pp RevTeX. Correct finished version supplie
    corecore