3,867 research outputs found

    Fractional Power-Law Spectral Response of CaCu3Ti4O12 Dielectric: Many-Body Effects

    Full text link
    Spectral character of dielectric response in CaCu3Ti4O12 across 0.5Hz-4MHz over 45-200K corresponding to neither the Debyean nor the KWW relaxation patterns rather indicates a random-walk like diffusive dynamics of moments. Non-linear relaxation here is due to the many body dipole-interactions, as confirmed by spectral-fits of our measured permittivity to the Dissado-Hill behaviour. Fractional power-laws observed in {\epsilon}*({\omega}) macroscopically reflect the fractal microscopic configurations. Below ~100K, the power-law exponent m (n) steeply decreases (increases), indicating finite length-scale collective response of moment-bearing entities. At higher temperatures, m gradually approaches 1 and n falls to low values, reflecting tendency towards the single-particle/Debyean relaxation.Comment: 10 pages, 3 figures, 22 reference

    Discovery of Strange Kinetics in Bulk Material: Correlated Dipoles in CaCu3Ti4O12

    Full text link
    Dielectric spectroscopy of CaCu3Ti4O12 was performed spanning broad ranges of temperature (10-300K) and frequency (0.5Hz-2MHz). We attribute the permittivity step-fall to the evolution of Kirkwood-Fr\"oehlich dipole-correlations; reducing the moment-density due to anti-parallel orienting dipoles, with decreasing temperature. Unambiguous sub-Arrhenic dispersion of the associated loss-peak reveals the prime role of strange kinetics; used to describe nonlinearity-governed meso-confined/fractal systems, witnessed here for the first time in a bulk material. Effective energy-scale is seen to follow thermal evolution of the moment density, and the maidenly estimated correlation-length achieves mesoscopic scale below 100K. Temperature dependence of correlations reveals emergence of a new, parallel-dipole-orientation branch below 85K. Novel features observed define a crossover temperature window connecting the single-dipoles regime and the correlated moments. Conciling known results, we suggest a fractal-like self-similar configuration of Ca/Cu-rich sub-phases; resultant heterogeneity endowing CaCu3Ti4O12 its peculiar electrical behaviour.Comment: 19 pages, 5 figures, 44 reference

    Phase transitions in Lu2_2Ir3_3Si5_5

    Get PDF
    We report the results of our investigations on a polycrystalline sample of Lu2_2Ir3_3Si5_5 which crystallizes in the U2_2Co3_3Si5_5 type structure (Ibam). These investigations comprise powder X-ray diffraction, magnetic susceptibility, electrical resistivity and high temperature (120-300 K) heat capacity studies. Our results reveal that the sample undergoes a superconducting transition below 3.5 K. It also undergoes a first order phase transition between 150-250 K as revealed by an upturn in the resistivity, a diasmagnetic drop in the magnetic susceptibility and a large anomaly (20-30 J/mol K) in the specific heat data. We observe a huge thermal hysteresis of almost 45 K between the cooling and warming data across this high temperature transition in all our measurements. Low temperature X-ray diffraction measurements at 87 K reveals that the compound undergoes a structural change at the high temperature transition. Resistivity data taken in repeated cooling and warming cycles indicate that at the high temperature transition, the system goes into a highly metastable state and successive heating/cooling curves are found to lie above the previous one and the resistance keeps increasing with every thermal cycle. The room temperature resistance of a thermaly cycled piece of the sample decays exponentialy with time with a decay time constant estimated to be about 104^4 secs. The anomaly (upturn) in the resistivity and the large drop (almost 45%) in the susceptibility across the high temperature transition suggest that the observed structural change is accompanied or induced by an electronic transition.Comment: 7 figures, 1 table and 18 reference

    Carrier Transport in Magnesium Diboride: Role of Nano-inclusions

    Full text link
    Anisotropic-gap and two-band effects smear out the superconducting transition (Tc) in literature reported thermal conductivity of MgB2, where large electronic contributions also suppress anomaly-manifestation in their negligible phononic-parts. Present thermal transport results on scarcely explored specimens featuring nano-inclusions exhibit a small but clear Tc-signature, traced to relatively appreciable phononic conduction, and its dominant electronic-scattering. The self-formed MgO as extended defects strongly scatter the charge carriers and minutely the phonons with their longer-mean-free-path near Tc. Conversely, near room temperature, the shorter-dominant-wavelength phonon's transport is hugely affected by these nanoparticles, undergoing ballistic to diffusive crossover and eventually entering the Ioffe-Regel mobility threshold regime.Comment: 14 pages, 4 figures, 28 reference
    corecore