1,712 research outputs found

    Q-Dependent Susceptibilities in Ferromagnetic Quasiperiodic Z-Invariant Ising Models

    Full text link
    We study the q-dependent susceptibility chi(q) of a series of quasiperiodic Ising models on the square lattice. Several different kinds of aperiodic sequences of couplings are studied, including the Fibonacci and silver-mean sequences. Some identities and theorems are generalized and simpler derivations are presented. We find that the q-dependent susceptibilities are periodic, with the commensurate peaks of chi(q) located at the same positions as for the regular Ising models. Hence, incommensurate everywhere-dense peaks can only occur in cases with mixed ferromagnetic-antiferromagnetic interactions or if the underlying lattice is aperiodic. For mixed-interaction models the positions of the peaks depend strongly on the aperiodic sequence chosen.Comment: LaTeX2e, 26 pages, 9 figures (27 eps files). v2: Misprints correcte

    New Results for the Correlation Functions of the Ising Model and the Transverse Ising Chain

    Full text link
    In this paper we show how an infinite system of coupled Toda-type nonlinear differential equations derived by one of us can be used efficiently to calculate the time-dependent pair-correlations in the Ising chain in a transverse field. The results are seen to match extremely well long large-time asymptotic expansions newly derived here. For our initial conditions we use new long asymptotic expansions for the equal-time pair correlation functions of the transverse Ising chain, extending an old result of T.T. Wu for the 2d Ising model. Using this one can also study the equal-time wavevector-dependent correlation function of the quantum chain, a.k.a. the q-dependent diagonal susceptibility in the 2d Ising model, in great detail with very little computational effort.Comment: LaTeX 2e, 31 pages, 8 figures (16 eps files). vs2: Two references added and minor changes of style. vs3: Corrections made and reference adde

    Duality and Symmetry in Chiral Potts Model

    Full text link
    We discover an Ising-type duality in the general NN-state chiral Potts model, which is the Kramers-Wannier duality of planar Ising model when N=2. This duality relates the spectrum and eigenvectors of one chiral Potts model at a low temperature (of small kk') to those of another chiral Potts model at a high temperature (of k1k'^{-1}). The τ(2)\tau^{(2)}-model and chiral Potts model on the dual lattice are established alongside the dual chiral Potts models. With the aid of this duality relation, we exact a precise relationship between the Onsager-algebra symmetry of a homogeneous superintegrable chiral Potts model and the sl2sl_2-loop-algebra symmetry of its associated spin-N12\frac{N-1}{2} XXZ chain through the identification of their eigenstates.Comment: Latex 34 pages, 2 figures; Typos and misprints in Journal version are corrected with minor changes in expression of some formula

    Overlapping Unit Cells in 3d Quasicrystal Structure

    Full text link
    A 3-dimensional quasiperiodic lattice, with overlapping unit cells and periodic in one direction, is constructed using grid and projection methods pioneered by de Bruijn. Each unit cell consists of 26 points, of which 22 are the vertices of a convex polytope P, and 4 are interior points also shared with other neighboring unit cells. Using Kronecker's theorem the frequencies of all possible types of overlapping are found.Comment: LaTeX2e, 11 pages, 5 figures (8 eps files), uses iopart.class. Final versio

    Pulmonary vasospasm in systemic sclerosis: noninvasive techniques for detection

    Get PDF
    In a subgroup of patients with systemic sclerosis (SSc), vasospasm affecting the pulmonary circulation may contribute to worsening respiratory symptoms, including dyspnea. Noninvasive assessment of pulmonary blood flow (PBF), utilizing inert-gas rebreathing (IGR) and dual-energy computed-tomography pulmonary angiography (DE-CTPA), may be useful for identifying pulmonary vasospasm. Thirty-one participants (22 SSc patients and 9 healthy volunteers) underwent PBF assessment with IGR and DE-CTPA at baseline and after provocation with a cold-air inhalation challenge (CACh). Before the study investigations, participants were assigned to subgroups: group A included SSc patients who reported increased breathlessness after exposure to cold air (n = 11), group B included SSc patients without cold-air sensitivity (n = 11), and group C patients included the healthy volunteers. Median change in PBF from baseline was compared between groups A, B, and C after CACh. Compared with groups B and C, in group A there was a significant decline in median PBF from baseline at 10 minutes (−10%; range: −52.2% to 4.0%; P < 0.01), 20 minutes (−17.4%; −27.9% to 0.0%; P < 0.01), and 30 minutes (−8.5%; −34.4% to 2.0%; P < 0.01) after CACh. There was no significant difference in median PBF change between groups B or C at any time point and no change in pulmonary perfusion on DE-CTPA. Reduction in pulmonary blood flow following CACh suggests that pulmonary vasospasm may be present in a subgroup of patients with SSc and may contribute to worsening dyspnea on exposure to cold

    Spin operator matrix elements in the superintegrable chiral Potts quantum chain

    Full text link
    We derive spin operator matrix elements between general eigenstates of the superintegrable Z_N-symmetric chiral Potts quantum chain of finite length. Our starting point is the extended Onsager algebra recently proposed by R.Baxter. For each pair of spaces (Onsager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factorized form, up to an overall scalar factor. This factor is known for the ground state Onsager sectors. For the matrix elements between the ground states of these sectors we perform the thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum chain in a transverse field (N=2 case) the factorized form for the matrix elements coincides with the corresponding expressions obtained recently by the Separation of Variables Method.Comment: 24 pages, 1 figur

    Excitation Spectrum and Correlation Functions of the Z_3-Chiral Potts Quantum Spin Chain

    Get PDF
    We study the excitation spectrum and the correlation functions of the Z_3- chiral Potts model in the massive high-temperature phase using perturbation expansions and numerical diagonalization. We are mainly interested in results for general chiral angles but we consider also the superintegrable case. For the parameter values considered, we find that the band structure of the low- lying part of the excitation spectrum has the form expected from a quasiparticle picture with two fundamental particles. Studying the N-dependence of the spectrum, we confirm the stability of the second fundamental particle in a limited range of the momentum, even when its energy becomes so high that it lies very high up among the multiparticle scattering states. This is not a phenomenon restricted to the superintegrable line. Calculating a non-translationally invariant correlation function, we give evidence that it is oscillating. Within our numerical accuracy we find a relation between the oscillation length and the dip position of the momentum dispersion of the lightest particle which seems to be quite independent of the chiral angles.Comment: 19 pages + 6 PostScript figures (LaTeX); BONN-TH-94-2

    Nonequilibrium Forces Between Neutral Atoms Mediated by a Quantum Field

    Get PDF
    We study all known and as yet unknown forces between two neutral atoms, modeled as three dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center of mass motion of the atom, its internal degrees of freedom and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first principle, systematic and unified description including the intrinsic field fluctuations and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces -- London, van der Waals and Casimir-Polder forces -- between neutral atoms in the long-time limit but also discover the existence of two new types of interatomic forces. The first, a `nonequilibrium force', arises when the field and atoms are not in thermal equilibrium, and the second, which we call an `entanglement force', originates from the correlations of the internal degrees of freedom of entangled atoms.Comment: 16 pages, 2 figure

    Roots of Unity: Representations of Quantum Groups

    Get PDF
    Representations of Quantum Groups U_q (g_n), g_n any semi simple Lie algebra of rank n, are constructed from arbitrary representations of rank n-1 quantum groups for q a root of unity. Representations which have the maximal dimension and number of free parameters for irreducible representations arise as special cases.Comment: 23 page

    Analyticity and Integrabiity in the Chiral Potts Model

    Full text link
    We study the perturbation theory for the general non-integrable chiral Potts model depending on two chiral angles and a strength parameter and show how the analyticity of the ground state energy and correlation functions dramatically increases when the angles and the strength parameter satisfy the integrability condition. We further specialize to the superintegrable case and verify that a sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate
    corecore