186 research outputs found

    The information about the state of a charge qubit gained by a weakly coupled quantum point contact

    Full text link
    We analyze the information that one can learn about the state of a quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector. We consider the general case where the qubit Hamiltonian and the qubit's operator probed by the detector do not commute. Because the qubit's state keeps evolving while being probed and the measurement data is mixed with a detector-related background noise, one might expect the detector to fail in this case. We show, however, that under suitable conditions and by proper analysis of the measurement data useful information about the initial state of the qubit can be extracted. Our approach complements the usual master-equation and quantum-trajectory approaches, which describe the evolution of the qubit's quantum state during the measurement process but do not keep track of the acquired measurement information.Comment: 5 pages, 3 figures; Published in the proceedings of the Nobel Symposium 141: Qubits for Future Quantum Informatio

    Quantum information processing using frequency control of impurity spins in diamond

    Full text link
    Spin degrees of freedom of charged nitrogen-vacancy (NV−^-) centers in diamond have large decoherence times even at room temperature, can be initialized and read out using optical fields, and are therefore a promising candidate for solid state qubits. Recently, quantum manipulations of NV−^-- centers using RF fields were experimentally realized. In this paper we show; first, that such operations can be controlled by varying the frequency of the signal, instead of its amplitude, and NV−^-- centers can be selectively addressed even with spacially uniform RF signals; second, that when several \NV - centers are placed in an off-resonance optical cavity, a similar application of classical optical fields provides a controlled coupling and enables a universal two-qubit gate (CPHASE). RF and optical control together promise a scalable quantum computing architecture

    Weak and strong measurement of a qubit using a switching-based detector

    Full text link
    We analyze the operation of a switching-based detector that probes a qubit's observable that does not commute with the qubit's Hamiltonian, leading to a nontrivial interplay between the measurement and free-qubit dynamics. In order to obtain analytic results and develop intuitive understanding of the different possible regimes of operation, we use a theoretical model where the detector is a quantum two-level system that is constantly monitored by a macroscopic system. We analyze how to interpret the outcome of the measurement and how the state of the qubit evolves while it is being measured. We find that the answers to the above questions depend on the relation between the different parameters in the problem. In addition to the traditional strong-measurement regime, we identify a number of regimes associated with weak qubit-detector coupling. An incoherent detector whose switching time is measurable with high accuracy can provide high-fidelity information, but the measurement basis is determined only upon switching of the detector. An incoherent detector whose switching time can be known only with low accuracy provides a measurement in the qubit's energy eigenbasis with reduced measurement fidelity. A coherent detector measures the qubit in its energy eigenbasis and, under certain conditions, can provide high-fidelity information.Comment: 20 pages (two-column), 6 figure

    Quantum two-level systems in Josephson junctions as naturally formed qubits

    Full text link
    The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoherence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson junction (CBJJ) can be considered as a multiqubit register. It can be coupled to other CBJJs to allow the application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative way to realize superconducting quantum information processing.Comment: Reference adde

    Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    Full text link
    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an opto-mechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.Comment: 6 pages, 6 figure

    Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates

    Full text link
    We present a theoretical analysis of the selective darkening method for implementing quantum controlled-NOT (CNOT) gates. This method, which we recently proposed and demonstrated, consists of driving two transversely-coupled quantum bits (qubits) with a driving field that is resonant with one of the two qubits. For specific relative amplitudes and phases of the driving field felt by the two qubits, one of the two transitions in the degenerate pair is darkened, or in other words, becomes forbidden by effective selection rules. At these driving conditions, the evolution of the two-qubit state realizes a CNOT gate. The gate speed is found to be limited only by the coupling energy J, which is the fundamental speed limit for any entangling gate. Numerical simulations show that at gate speeds corresponding to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and increases further for lower gate speeds. In addition, the effect of higher-lying energy levels and weak anharmonicity is studied, as well as the scalability of the method to systems of multiple qubits. We conclude that in all these respects this method is competitive with existing schemes for creating entanglement, with the added advantages of being applicable for qubits operating at fixed frequencies (either by design or for exploitation of coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure

    Controllable coherent population transfers in superconducting qubits for quantum computing

    Full text link
    We propose an approach to coherently transfer populations between selected quantum states in one- and two-qubit systems by using controllable Stark-chirped rapid adiabatic passages (SCRAPs). These {\it evolution-time insensitive} transfers, assisted by easily implementable single-qubit phase-shift operations, could serve as elementary logic gates for quantum computing. Specifically, this proposal could be conveniently demonstrated with existing Josephson phase qubits. Our proposal can find an immediate application in the readout of these qubits. Indeed, the broken parity symmetries of the bound states in these artificial "atoms" provide an efficient approach to design the required adiabatic pulses.Comment: 4 pages, 6 figures. to appear in Physical Review Letter

    Non-Markovian entanglement dynamics in coupled superconducting qubit systems

    Full text link
    We theoretically analyze the entanglement generation and dynamics by coupled Josephson junction qubits. Considering a current-biased Josephson junction (CBJJ), we generate maximally entangled states. In particular, the entanglement dynamics is considered as a function of the decoherence parameters, such as the temperature, the ratio r≡ωc/ω0r\equiv\omega_c/\omega_0 between the reservoir cutoff frequency ωc\omega_c and the system oscillator frequency ω0\omega_0, % between ω0\omega_0 the characteristic frequency of the %quantum system of interest, and ωc\omega_c the cut-off frequency of %Ohmic reservoir and the energy levels split of the superconducting circuits in the non-Markovian master equation. We analyzed the entanglement sudden death (ESD) and entanglement sudden birth (ESB) by the non-Markovian master equation. Furthermore, we find that the larger the ratio rr and the thermal energy kBTk_BT, the shorter the decoherence. In this superconducting qubit system we find that the entanglement can be controlled and the ESD time can be prolonged by adjusting the temperature and the superconducting phases Φk\Phi_k which split the energy levels.Comment: 13 pages, 3 figure
    • …
    corecore