108 research outputs found

    Greater Trochanteric Pain Syndrome

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135686/1/jum201635112413.pd

    AAC W1876 hard red spring wheat

    Get PDF
    AAC W1876 hard red spring wheat (Triticum aestivum L.) has grain yield and time to maturity within the range of the check cultivars: Katepwa, Laura, Lillian, Carberry, and CDC Kernen. AAC W1876 has an awned spike, a low lodging score indicative of strong straw, and a short plant stature typical of a semidwarf wheat. AAC W1876 expressed resistance to prevalent races of leaf rust, moderate resistance to stem rust, intermediate resistance to fusarium head blight, yellow rust, common bunt, and loose smut. Compared to the Canada Western Red Spring check cultivars, AAC W1876 had improved flour yield and lower flour ash. AAC W1876 is eligible for grades of Canada Western Red Spring

    Comparing Biochar-Swine Manure Mixture to Conventional Manure Impact on Soil Nutrient Availability and Plant Uptake—A Greenhouse Study

    Get PDF
    The use of swine manure as a source of plant nutrients is one alternative to synthetic fertilizers. However, conventional manure application with \u3e90% water and a low C:N ratio results in soil C loss to the atmosphere. Our hypothesis was to use biochar as a manure nutrient stabilizer that would slowly release nutrients to plants upon biochar-swine manure mixture application to soil. The objectives were to evaluate the impact of biochar-treated swine manure on soil total C, N, and plant-available macro- and micronutrients in greenhouse-cultivated corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). Neutral pH red oak (RO), highly alkaline autothermal corn stover (HAP), and mild acidic Fe-treated autothermal corn stover (HAPE) biomass were pyrolyzed to prepare biochars. Each biochar was surface-applied to swine manure at a 1:4 (biochar wt/manure wt) ratio to generate mixtures of manure and respective biochars (MRO, MHAP, and MHAPE). Conventional manure (M) control and manure-biochar mixtures were then applied to the soil at a recommended rate. Corn and soybean were grown under these controls and treatments (S, M, MRO, MHAP, and MHAPE) to evaluate the manure-biochar impact on soil quality, plant biomass yield, and nutrient uptake. Soil organic matter significantly (\u3c0.05) increased in all manure-biochar treatments; however, no change in soil pH or total N was observed under any treatment. No difference in soil ammonium between treatments was identified. There was a significant decrease in soil Mehlich3 (M3) P and KCl extractable soil NO3− for all manure-biochar treatments compared to the conventional M. However, the plant biomass nutrient concentrations were not significantly different from control manure. Moreover, an increasing trend of plant total N and decreasing trend of P in the plant under all biochar-manure treatments than the controls were noted. This observation suggests that the presence of biochar is capable of influencing the soil N and P in such a way as not to lose those nutrients at the early growth stages of the plant. In general, no statistical difference in corn or soybean biomass yield and plant nutrient uptake for N, P, and K was observed. Interestingly, manure-biochar application to soil significantly diluted the M3 extractable soil Cu and Zn concentrations. The results attribute that manure-biochar has the potential to be a better soil amendment than conventional manure application to the soil

    AAC Congress Durum Wheat

    Get PDF
    Congress durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) is adapted to the durum production area of the Canadian prairies. Averaged over three years, AAC Congress yielded significantly more grain than Strongfield and AC Navigator. AAC Congress had protein concentration significantly lower than Strongfield but significantly higher than Brigade. AAC Congress is eligible for grades of Canada Western Amber Durum. It has lower grain cadmium concentration and higher yellow pigment concentration than the check cultivars, except AAC Cabri

    Patterns of strain and the determination of the safe arc of motion after subscapularis repair—A biomechanical study

    Full text link
    This study characterizes the strain patterns and safe arcs for passive range of motion (ROM) in the superior and inferior subscapularis tendon in seven cadaveric shoulders, mounted for controlled ROM, after deltopectoral approach to the glenohumeral joint, including tenotomy of the subscapularis tendon 1 cm medial to its insertion on the lesser tuberosity. The tenotomy was repaired with end‐to‐end suture in neutral rotation. Strain patterns were measured during passive ROM in external rotation (ER), ER with 30° abduction (ER+30), abduction, and forward flexion in the scapular plane (SP) before and after surgery. Percentages were calculated from 35 trials corresponding to five trials of each motion across seven specimens. With ER of 0−30°, 89% of trials of superior subscapularis tendon and 100% of trials of inferior subscapularis tendon achieved strains >3%, with very similar patterns noted in ER+30. In abduction of 0−90°, 5.8% of trials of superior and 85.3% of trials of inferior tendon achieved >3% strain. With passive ROM in SP, 26.5% of trials reached 3% strain in superior tendon compared to 100% in inferior tendon. Strain patterns in abduction and SP differed significantly (p < 0.001). Selective tenotomy and repair of the superior subscapularis tendon with open reparative or reconstructive shoulder procedures, when feasible, may be favorable for protected early passive ROM and rehabilitation postoperatively. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:518–524, 2016.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137457/1/jor23045-sup-0002-SuppData-S2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137457/2/jor23045.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137457/3/jor23045_am.pd

    Biochar-Swine Manure Impact on Soil Nutrients and Carbon Under Controlled Leaching Experiment Using a Midwestern Mollisols

    Get PDF
    Biochar application to the soil can improve soil quality and nutrient leaching loss from swine manure adapted soils. Our working hypothesis was that the biochar-incubated with manure could be a better soil amendment than conventional manure application. The manure-biochar application to the soil would decrease nutrient leaching from manure and increase plant-available nutrients. The study objectives were to 1) assess the physicochemical properties of the manure-biochar mixture after lab incubation and 2) evaluate the impact of biochar-treated swine manure on soil total C, N, and other major and minor nutrients in comparison to conventional manure application to soil. Three biochars 1) neutral pH red-oak (RO), 2) highly alkaline autothermal corn (Zea mays) stover (HAP), and 3) mild acidic Fe-treated autothermal corn stover (HAPE) were incubated with swine manure for a month. The biochar-manure mixture was applied in triplicate to soil columns with an application rate determined by the P2O5-P content in manure or manure-biochar mixtures after the incubation. The ammonium (NH4+), nitrate (NO3‒), and reactive P concentrations in soil column leachates were recorded for eight leaching events. Soil properties and plant-available nutrients were compared between treatments and control manure and soil. Manure-(HAP&HAPE) biochar treatments significantly increased soil organic matter (OM), and all biochar-manure mixture increased (numerically) soil total C, N, and improved soil bulk density. Concentrations of NH4+ and NO3‒ significantly increased in MHAPE column leachates during this 4-week study and the KCl-extractable NH4+ and NO3‒ in the soil at the end of the experiment. A significant reduction in soil Mehlich3 Cu was also observed for the manure-HAPE mixture compared with the manure control. The manure-red oak biochar significantly increased the soil Mn availability than other manure-biochar treatments or manure control. Overall, the manure-biochar incubation enabled biochar to stabilize the C and several nutrients from manure. The subsequent manure-biochar mixture application to soil improved soil quality and plant nutrient availability compared to conventional manure application. This proof-of-the-concept study suggests that biochars could be used to solve both environmental and agronomic challenges and further improve the sustainability of animal and crop production agriculture

    Delayed Senescence in Soybean: Terminology, Research Update, and Survey Results from Growers

    Get PDF
    The terms used to describe symptoms of delayed senescence in soybean often are used inconsistently or interchangeably and do not adequately distinguish the observed symptoms in the field. Various causes have been proposed to explain the development of delayed senescence symptoms. In this article, we review published reports on delayed senescence symptoms in soybean, summarize current research findings, provide examples of terms related to specific symptoms, and present an overview of the results of a multi-state survey directed to soybean growers to understand their concerns about delayed soybean senescence. Some of these terms, such as green bean syndrome and green stem syndrome, describe symptoms induced by biotic factors, while other terms describe symptoms associated with abiotic factors. Some delayed senescence terms involve the whole plant remaining green while other terms include just the stem and other plant parts such as pods. In the grower survey, 77% reported observing soybean plants or plant parts that remained green after most plants in the field were fully mature with ripe seed. Most respondents attributed these symptoms to changes in breeding and choice of cultivars. At the end of this article, we standardized the terms used to describe delayed senescence in soybean
    corecore