624 research outputs found
Span programs and quantum algorithms for st-connectivity and claw detection
We introduce a span program that decides st-connectivity, and generalize the
span program to develop quantum algorithms for several graph problems. First,
we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries
to the n x n adjacency matrix to decide if vertices s and t are connected,
under the promise that they either are connected by a path of length at most d,
or are disconnected. We also show that if T is a path, a star with two
subdivided legs, or a subdivision of a claw, its presence as a subgraph in the
input graph G can be detected with O(n) quantum queries to the adjacency
matrix. Under the promise that G either contains T as a subgraph or does not
contain T as a minor, we give O(n)-query quantum algorithms for detecting T
either a triangle or a subdivision of a star. All these algorithms can be
implemented time efficiently and, except for the triangle-detection algorithm,
in logarithmic space. One of the main techniques is to modify the
st-connectivity span program to drop along the way "breadcrumbs," which must be
retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure
Serial composition of quantum coin-flipping, and bounds on cheat detection for bit-commitment
Quantum protocols for coin-flipping can be composed in series in such a way
that a cheating party gains no extra advantage from using entanglement between
different rounds. This composition principle applies to coin-flipping protocols
with cheat sensitivity as well, and is used to derive two results: There are no
quantum strong coin-flipping protocols with cheat sensitivity that is linear in
the bias (or bit-commitment protocols with linear cheat detection) because
these can be composed to produce strong coin-flipping with arbitrarily small
bias. On the other hand, it appears that quadratic cheat detection cannot be
composed in series to obtain even weak coin-flipping with arbitrarily small
bias.Comment: 7 pages, REVTeX 4 (minor corrections in v2
Quantum walks on two-dimensional grids with multiple marked locations
The running time of a quantum walk search algorithm depends on both the
structure of the search space (graph) and the configuration of marked
locations. While the first dependence have been studied in a number of papers,
the second dependence remains mostly unstudied.
We study search by quantum walks on two-dimensional grid using the algorithm
of Ambainis, Kempe and Rivosh [AKR05]. The original paper analyses one and two
marked location cases only. We move beyond two marked locations and study the
behaviour of the algorithm for an arbitrary configuration of marked locations.
In this paper we prove two results showing the importance of how the marked
locations are arranged. First, we present two placements of marked
locations for which the number of steps of the algorithm differs by
factor. Second, we present two configurations of and
marked locations having the same number of steps and probability to
find a marked location
New Developments in Quantum Algorithms
In this survey, we describe two recent developments in quantum algorithms.
The first new development is a quantum algorithm for evaluating a Boolean
formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This
provides quantum speedups for any problem that can be expressed via Boolean
formulas. This result can be also extended to span problems, a generalization
of Boolean formulas. This provides an optimal quantum algorithm for any Boolean
function in the black-box query model.
The second new development is a quantum algorithm for solving systems of
linear equations. In contrast with traditional algorithms that run in time
O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in
time O(\log^c N). It outputs a quantum state describing the solution of the
system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201
The quantum to classical transition for random walks
We look at two possible routes to classical behavior for the discrete quantum
random walk on the line: decoherence in the quantum ``coin'' which drives the
walk, or the use of higher-dimensional coins to dilute the effects of
interference. We use the position variance as an indicator of classical
behavior, and find analytical expressions for this in the long-time limit; we
see that the multicoin walk retains the ``quantum'' quadratic growth of the
variance except in the limit of a new coin for every step, while the walk with
decoherence exhibits ``classical'' linear growth of the variance even for weak
decoherence.Comment: 4 pages RevTeX 4.0 + 2 figures (encapsulated Postscript). Trimmed for
length. Minor corrections + one new referenc
Generic quantum walk using a coin-embedded shift operator
The study of quantum walk processes has been widely divided into two standard
variants, the discrete-time quantum walk (DTQW) and the continuous-time quantum
walk (CTQW). The connection between the two variants has been established by
considering the limiting value of the coin operation parameter in the DTQW, and
the coin degree of freedom was shown to be unnecessary [26]. But the coin
degree of freedom is an additional resource which can be exploited to control
the dynamics of the QW process. In this paper we present a generic quantum walk
model using a quantum coin-embedded unitary shift operation . The
standard version of the DTQW and the CTQW can be conveniently retrieved from
this generic model, retaining the features of the coin degree of freedom in
both variants.Comment: 5 pages, 1 figure, Publishe
A large family of quantum weak coin-flipping protocols
Each classical public-coin protocol for coin flipping is naturally associated
with a quantum protocol for weak coin flipping. The quantum protocol is
obtained by replacing classical randomness with quantum entanglement and by
adding a cheat detection test in the last round that verifies the integrity of
this entanglement. The set of such protocols defines a family which contains
the protocol with bias 0.192 previously found by the author, as well as
protocols with bias as low as 1/6 described herein. The family is analyzed by
identifying a set of optimal protocols for every number of messages. In the
end, tight lower bounds for the bias are obtained which prove that 1/6 is
optimal for all protocols within the family.Comment: 17 pages, REVTeX 4 (minor corrections in v2
Grover's search with faults on some marked elements
Grover's algorithm is a quantum query algorithm solving the unstructured
search problem of size using queries. It provides a
significant speed-up over any classical algorithm \cite{Gro96}.
The running time of the algorithm, however, is very sensitive to errors in
queries. It is known that if query may fail (report all marked elements as
unmarked) the algorithm needs queries to find a marked element
\cite{RS08}. \cite{AB+13} have proved the same result for the model where each
marked element has its own probability to be reported as unmarked.
We study the behavior of Grover's algorithm in the model where the search
space contains both faulty and non-faulty marked elements. We show that in this
setting it is indeed possible to find one of non-faulty marked items in
queries.
We also analyze the limiting behavior of the algorithm for a large number of
steps and show the existence and the structure of limiting state .Comment: 17 pages, 6 figure
Disordered quantum walk-induced localization of a Bose-Einstein condensate
We present an approach to induce localization of a Bose-Einstein condensate
in a one-dimensional lattice under the influence of unitary quantum walk
evolution using disordered quantum coin operation. We introduce a discrete-time
quantum walk model in which the interference effect is modified to diffuse or
strongly localize the probability distribution of the particle by assigning a
different set of coin parameters picked randomly for each step of the walk,
respectively. Spatial localization of the particle/state is explained by
comparing the variance of the probability distribution of the quantum walk in
position space using disordered coin operation to that of the walk using an
identical coin operation for each step. Due to the high degree of control over
quantum coin operation and most of the system parameters, ultracold atoms in an
optical lattice offer opportunities to implement a disordered quantum walk that
is unitary and induces localization. Here we present a scheme to use a
Bose-Einstein condensate that can be evolved to the superposition of its
internal states in an optical lattice and control the dynamics of atoms to
observe localization. This approach can be adopted to any other physical system
in which controlled disordered quantum walk can be implemented.Comment: 6 pages, 4 figures, published versio
- …