362 research outputs found
Pemphigus vulgaris autoantibodies induce apoptosis in HaCaT keratinocytes
Pemphigus vulgaris (PV) is an autoimmune disease characterized by binding of IgG autoantibodies to epidermal keratinocyte desmosomes. IgG autoantibodies obtained from a patient with mucocutaneous PV reacted with plakoglobin (Plkg) in addition to desmoglein-3 (Dsg3) and Dsg1. Immunofluorescence analysis confirmed that IgG autoantibodies, unlike antibodies from a healthy volunteer, caused disruption of cell-cell contacts in HaCaT keratinocytes. Moreover, apoptosis was enhanced in cells treated with autoantibodies compared to those treated with normal antibodies. The apoptotic process induced by IgG autoantibodies was characterized by caspase-3 activation, Bcl-2 depletion and Bax expression. The present report demonstrates that PV IgG autoantibodies promote apoptosis in HaCaT keratinocytes
Strong confinement of PbSe and PbS quantum dots
We synthesized PbSe and PbS quantum dots in strong-confinement regime, and measured energy relaxation time by using pump-and-probe experiments. Energy relaxation time of PbSe dots in phosphate glasses showed clear correlation with the average radius. Smaller dots were shown to have shorter decay times. This dependence is ascribed to the relaxation to the surface of the dots
The desmosomal cadherin desmoglein-3 acts as a keratinocyte anti-stress protein via suppression of p53
Desmoglein-3 (Dsg3), the Pemphigus Vulgaris (PV) antigen (PVA), plays an essential role in keratinocyte cell–cell
adhesion and regulates various signaling pathways involved in the progression and metastasis of cancer where it is
upregulated. We show here that expression of Dsg3 impacts on the expression and function of p53, a key transcription
factor governing the responses to cellular stress. Dsg3 depletion increased p53 expression and activity, an effect
enhanced by treating cells with UVB, mechanical stress and genotoxic drugs, whilst increased Dsg3 expression
resulted in the opposite effects. Such a pathway in the negative regulation of p53 by Dsg3 was Dsg3 specific since
neither E-cadherin nor desmoplakin knockdown caused similar effects. Analysis of Dsg3−/− mouse skin also indicated
an increase of p53/p21WAF1/CIP1 and cleaved caspase-3 relative to Dsg3+/− controls. Finally, we evaluated whether this
pathway was operational in the autoimmune disease PV in which Dsg3 serves as a major antigen involved in blistering
pathogenesis. We uncovered increased p53 with diffuse cytoplasmic and/or nuclear staining in the oral mucosa of
patients, including cells surrounding blisters and the pre-lesional regions. This finding was verified by in vitro studies
where treatment of keratinocytes with PV sera, as well as a characterized pathogenic antibody specifically targeting
Dsg3, evoked pronounced p53 expression and activity accompanied by disruption of cell–cell adhesion. Collectively,
our findings suggThe study was supported by the Barts and The London School of Medicine and Dentistry and Guizhou Medical University, China. The animal work was supported by Deutsche Forschungsgemeinschaft (TR-SFB 156). Jutamas Uttagomol was supported by a scholarship from Naresuan University, Thailand
Autoimmune and infectious skin diseases that target desmogleins
Desmosomes are intercellular adhesive junctions of epithelial cells that contain two major transmembrane components, the desmogleins (Dsg) and desmocollins (Dsc), which are cadherin-type cell–cell adhesion molecules and are anchored to intermediate filaments of keratin through interactions with plakoglobin and desmoplakin. Desmosomes play an important role in maintaining the proper structure and barrier function of the epidermis and mucous epithelia. Four Dsg isoforms have been identified to date, Dsg1–Dsg4, and are involved in several skin and heart diseases. Dsg1 and Dsg3 are the two major Dsg isoforms in the skin and mucous membranes, and are targeted by IgG autoantibodies in pemphigus, an autoimmune disease of the skin and mucous membranes. Dsg1 is also targeted by exfoliative toxin (ET) released by Staphylococcus aureus in the infectious skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). ET is a unique serine protease that shows lock and key specificity to Dsg1. Dsg2 is expressed in all tissues possessing desmosomes, including simple epithelia and myocardia, and mutations in this gene are responsible for arrhythmogenic right ventricular cardiomyopathy/dysplasia. Dsg4 plays an important adhesive role mainly in hair follicles, and Dsg4 mutations cause abnormal hair development. Recently, an active disease model for pemphigus was generated by a unique approach using autoantigen-deficient mice that do not acquire tolerance against the defective autoantigen. Adoptive transfer of Dsg3−/− lymphocytes into mice expressing Dsg3 induces stable anti-Dsg3 IgG production with development of the pemphigus phenotype. This mouse model is a valuable tool with which to investigate immunological mechanisms of harmful IgG autoantibody production in pemphigus. Further investigation of desmoglein molecules will continue to provide insight into the unsolved pathophysiological mechanisms of diseases and aid in the development of novel therapeutic strategies with minimal side effects
Non-classical forms of pemphigus: pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus
The pemphigus group comprises the autoimmune intraepidermal blistering diseases classically divided into two major types: pemphigus vulgaris and pemphigus foliaceous. Pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus are rarer forms that present some clinical, histological and immunopathological characteristics that are different from the classical types. These are reviewed in this article. Future research may help definitively to locate the position of these forms in the pemphigus group, especially with regard to pemphigus herpetiformis and the IgG/ IgA pemphigus.Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology DepartmentUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology and Pathology DepartmentsUNIFESP, EPM, Dermatology DepartmentUNIFESP, EPM, Dermatology and Pathology DepartmentsSciEL
The desmosome and pemphigus
Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
Mucosal Pemphigus Vulgaris Anti-Dsg3 IgG Is Pathogenic to the Oral Mucosa of Humanized Dsg3 Mice
There are two major clinical subsets of pemphigus vulgaris (PV), mucosal PV (mPV) and mucocutaneous PV (mcPV). The mPV subset exhibits anti-human desmoglein (Dsg) 3 autoantibodies that fail to recognize murine Dsg3; thus, passive transfer experiments of mPV IgG into WT mice have been unsuccessful at inducing disease. We therefore generated a fully humanized Dsg3 (hDSG3) murine model utilizing a human Dsg3 transgenic animal crossed to the murine Dsg3 knockout line. Expression of hDsg3 in the mucosa rescues the murine Dsg3 knockout phenotype. Well characterized mPV sera bind mucosal epithelia from the hDsg3 mice, but not mucosal tissues from WT mice by as detected by indirect immunofluorescence. The majority of mPV sera preferentially recognize hDsg3 compared to mDsg3 by immunoprecipitation as well. Passive transfer of mPV IgG into adult hDsg3 mice, but not WT mice, induces suprabasilar acantholysis in mucosal tissues, thus confirming pathogenicity of mPV anti-hDsg3 IgG in vivo. Human anti-hDsg3 antibodies are detected in perilesional mucosa as well as in sera of recipient mice by immunofluorescence. These findings suggest that the Dsg3 epitopes targeted by pathogenic mPV IgG are human specific. This hDsg3 mouse model will be invaluable in studying the clinical transition from mPV to mcPV
Pemphigus autoimmunity: Hypotheses and realities
The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients
Definitions and outcome measures for bullous pemphigoid: Recommendations by an international panel of experts
Our scientific knowledge of bullous pemphigoid (BP) has dramatically progressed in recent years. However, despite the availability of various therapeutic options for the treatment of inflammatory diseases, only a few multicenter controlled trials have helped to define effective therapies in BP. A major obstacle in sharing multicenter-based evidences for therapeutic efforts is the lack of generally accepted definitions for the clinical evaluation of patients with BP. Common terms and end points of BP are needed so that experts in the field can accurately measure and assess disease extent, activity, severity, and therapeutic response, and thus facilitate and advance clinical trials. These recommendations from the International Pemphigoid Committee represent 2 years of collaborative efforts to attain mutually acceptable common definitions for BP and proposes a disease extent score, the BP Disease Area Index. These items should assist in the development of consistent reporting of outcomes in future BP reports and studies. © 2011 by the American Academy of Dermatology, Inc
- …