9,901 research outputs found
Proton-Deuteron Elastic Scattering from 2.5 to 22.5 MeV
We present the results of a calculation of differential cross sections and
polarization observables for proton-deuteron elastic scattering, for proton
laboratory energies from 2.5 to 22.5 MeV. The Paris potential parametrisation
of the nuclear force is used. As solution method for the charged-composite
particle equations the 'screening and renormalisation approach' is adopted
which allows to correctly take into account the Coulomb repulsion between the
two protons. Comparison is made with the precise experimental data of Sagara et
al. [Phys. Rev. C 50, 576 (1994)] and of Sperison et al. [Nucl. Phys. A422, 81
(1984)].Comment: 24 pages, 8 eps figures, uses REVTe
Momentum Space Integral Equations for Three Charged Particles: Diagonal Kernels
It has been a long-standing question whether momentum space integral
equations of the Faddeev type are applicable to reactions of three charged
particles, in particular above the three-body threshold. For, the presence of
long-range Coulomb forces has been thought to give rise to such severe
singularities in their kernels that the latter may lack the compactness
property known to exist in the case of purely short-range interactions.
Employing the rigorously equivalent formulation in terms of an
effective-two-body theory we have proved in a preceding paper [Phys. Rev. C
{\bf 61}, 064006 (2000)] that, for all energies, the nondiagonal kernels
occurring in the integral equations which determine the transition amplitudes
for all binary collision processes, possess on and off the energy shell only
integrable singularities, provided all three particles have charges of the same
sign, i.e., all Coulomb interactions are repulsive. In the present paper we
prove that, for particles with charges of equal sign, the diagonal kernels, in
contrast, possess one, but only one, nonintegrable singularity. The latter can,
however, be isolated explicitly and dealt with in a well-defined manner. Taken
together these results imply that modified integral equations can be
formulated, with kernels that become compact after a few iterations. This
concludes the proof that standard solution methods can be used for the
calculation of all binary (i.e., (in-)elastic and rearrangement) amplitudes by
means of momentum space integral equations of the effective-two-body type.Comment: 36 pages, 2 figures, accepted for publication in Phys. Rev.
Long-range behavior of the optical potential for the elastic scattering of charged composite particles
The asymptotic behavior of the optical potential, describing elastic
scattering of a charged particle off a bound state of two charged, or
one charged and one neutral, particles at small momentum transfer
or equivalently at large intercluster distance
, is investigated within the framework of the exact three-body
theory. For the three-charged-particle Green function that occurs in the exact
expression for the optical potential, a recently derived expression, which is
appropriate for the asymptotic region under consideration, is used. We find
that for arbitrary values of the energy parameter the non-static part of the
optical potential behaves for as
. From this we derive for the
Fourier transform of its on-shell restriction for the behavior , i.e.,
dipole or quadrupole terms do not occur in the coordinate-space asymptotics.
This result corroborates the standard one, which is obtained by perturbative
methods. The general, energy-dependent expression for the dynamic
polarisability is derived; on the energy shell it reduces to the
conventional polarisability which is independent of the energy. We
emphasize that the present derivation is {\em non-perturbative}, i.e., it does
not make use of adiabatic or similar approximations, and is valid for energies
{\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte
Three- and Four-Body Scattering Calculations including the Coulomb Force
The method of screening and renormalization for including the Coulomb
interaction in the framework of momentum-space integral equations is applied to
the three- and four-body nuclear reactions. The Coulomb effect on the
observables and the ability of the present nuclear potential models to describe
the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily,
October 2008, to be published in Few-Body System
Major scientific challenges and opportunities in understanding magnetic reconnection and related explosive phenomena throughout the universe
This is a group white paper of 100 authors (each with explicit permission via email) from 51 institutions on the topic of magnetic reconnection which is relevant to 6 thematic areas. Grand challenges and research opportunities are described in observations, numerical modeling and laboratory experiments in the upcoming decade.https://ui.adsabs.harvard.edu/abs/2019BAAS...51c...5J/abstractAccepted manuscrip
System Size and Centrality Dependence of the Electric Charge Correlations in A+A and p+p Collisions at the SPS Energies
The Balance Function analysis method was developed in order to study the long
range correlations in pseudo-rapidity of charged particle. The final results on
p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at GeV and the preliminary data at GeV are presented.
The width of the Balance Function decreases with increasing system size and
centrality of the collisions. This could suggest a delayed hadronization
scenario.Comment: To appear in the proceedings of NPDC18, Prague, Czech Republic, 23-28
Aug. 200
Computing the Similarity Between Moving Curves
In this paper we study similarity measures for moving curves which can, for
example, model changing coastlines or retreating glacier termini. Points on a
moving curve have two parameters, namely the position along the curve as well
as time. We therefore focus on similarity measures for surfaces, specifically
the Fr\'echet distance between surfaces. While the Fr\'echet distance between
surfaces is not even known to be computable, we show for variants arising in
the context of moving curves that they are polynomial-time solvable or
NP-complete depending on the restrictions imposed on how the moving curves are
matched. We achieve the polynomial-time solutions by a novel approach for
computing a surface in the so-called free-space diagram based on max-flow
min-cut duality
Investigations on alternative substances for control of apple scab - Results from Conidia germinating tests and experiments with plant extracts
The intention of this research project, which was supported within the "Bundesprogramm Ökologischer
Landbau", was to find alternatives for the control of Venturia inaequalis for the organic fruitgrower.
Beside the investigations on reducing the ascospore potential on fallen leaves, experiments
were conducted in laboratory, greenhouses and in orchard to test direct control of scab with different
plant extracts, concentrations and methods of extraction. Extracts from Inula viscosa, Quillaja
saponaria-bark, citrus-species (AGROMIL) and Saponaria officinalis revealed a distinct efficacy
against apple scab in greenhouse studies on apple seedlings. ELOT-VIS, CHITOPLANT, COMCAT,
MOOSEXTRAKT, SILIOPLANT und FZB 24 did not show sufficient efficacy with the application schedule
used for control of scab. Mixtures of Quillaja-saponine and sulphur reduced effectively apple scab
incidence. In an experiment concerning rain stability Citrus-extract and Quillaja-saponine showed a
lower efficacy against scab after a simulated rain of 5 mm. The screening of different supplements
to Citrus-extract as surfactants and adhesives revealed GREEMAX and BIOPLUSS as promising additives.
Both combinations showed an efficacy comparable to copperoxychloride corresponding to
400 g elementary copper per ha
Precision preparation of strings of trapped neutral atoms
We have recently demonstrated the creation of regular strings of neutral
caesium atoms in a standing wave optical dipole trap using optical tweezers [Y.
Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized
atom-by-atom, extracting an atom and re-inserting it at the desired position
with sub-micrometer resolution. We describe our experimental setup and present
detailed measurements as well as simple analytical models for the resolution of
the extraction process, for the precision of the insertion, and for heating
processes. We compare two different methods of insertion, one of which permits
the placement of two atoms into one optical micropotential. The theoretical
models largely explain our experimental results and allow us to identify the
main limiting factors for the precision and efficiency of the manipulations.
Strategies for future improvements are discussed.Comment: 25 pages, 18 figure
R-matrix theory of driven electromagnetic cavities
Resonances of cylindrical symmetric microwave cavities are analyzed in
R-matrix theory which transforms the input channel conditions to the output
channels. Single and interfering double resonances are studied and compared
with experimental results, obtained with superconducting microwave cavities.
Because of the equivalence of the two-dimensional Helmholtz and the stationary
Schroedinger equations, the results present insight into the resonance
structure of regular and chaotic quantum billiards.Comment: Revtex 4.
- …
