6,237 research outputs found
Breathing solitary-pulse pairs in a linearly coupled system
It is shown that pairs of solitary pulses (SPs) in a linearly-coupled system
with opposite group-velocity dispersions form robust breathing bound states.
The system can be realized by temporal-modulation coupling of SPs with
different carrier frequencies propagating in the same medium, or by coupling of
SPs in a dual-core waveguide. Broad SP pairs are produced in a virtually exact
form by means of the variational approximation. Strong nonlinearity tends to
destroy the periodic evolution of the SP pairs.Comment: Optics Letters, in pres
Bounds for graph regularity and removal lemmas
We show, for any positive integer k, that there exists a graph in which any
equitable partition of its vertices into k parts has at least ck^2/\log^* k
pairs of parts which are not \epsilon-regular, where c,\epsilon>0 are absolute
constants. This bound is tight up to the constant c and addresses a question of
Gowers on the number of irregular pairs in Szemer\'edi's regularity lemma.
In order to gain some control over irregular pairs, another regularity lemma,
known as the strong regularity lemma, was developed by Alon, Fischer,
Krivelevich, and Szegedy. For this lemma, we prove a lower bound of
wowzer-type, which is one level higher in the Ackermann hierarchy than the
tower function, on the number of parts in the strong regularity lemma,
essentially matching the upper bound. On the other hand, for the induced graph
removal lemma, the standard application of the strong regularity lemma, we find
a different proof which yields a tower-type bound.
We also discuss bounds on several related regularity lemmas, including the
weak regularity lemma of Frieze and Kannan and the recently established regular
approximation theorem. In particular, we show that a weak partition with
approximation parameter \epsilon may require as many as
2^{\Omega(\epsilon^{-2})} parts. This is tight up to the implied constant and
solves a problem studied by Lov\'asz and Szegedy.Comment: 62 page
Span programs and quantum algorithms for st-connectivity and claw detection
We introduce a span program that decides st-connectivity, and generalize the
span program to develop quantum algorithms for several graph problems. First,
we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries
to the n x n adjacency matrix to decide if vertices s and t are connected,
under the promise that they either are connected by a path of length at most d,
or are disconnected. We also show that if T is a path, a star with two
subdivided legs, or a subdivision of a claw, its presence as a subgraph in the
input graph G can be detected with O(n) quantum queries to the adjacency
matrix. Under the promise that G either contains T as a subgraph or does not
contain T as a minor, we give O(n)-query quantum algorithms for detecting T
either a triangle or a subdivision of a star. All these algorithms can be
implemented time efficiently and, except for the triangle-detection algorithm,
in logarithmic space. One of the main techniques is to modify the
st-connectivity span program to drop along the way "breadcrumbs," which must be
retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure
DNA-Mediated Electrochemistry
The base pair stack of DNA has been demonstrated as a medium for long-range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here, we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry
Heavy Hitters and the Structure of Local Privacy
We present a new locally differentially private algorithm for the heavy
hitters problem which achieves optimal worst-case error as a function of all
standardly considered parameters. Prior work obtained error rates which depend
optimally on the number of users, the size of the domain, and the privacy
parameter, but depend sub-optimally on the failure probability.
We strengthen existing lower bounds on the error to incorporate the failure
probability, and show that our new upper bound is tight with respect to this
parameter as well. Our lower bound is based on a new understanding of the
structure of locally private protocols. We further develop these ideas to
obtain the following general results beyond heavy hitters.
Advanced Grouposition: In the local model, group privacy for
users degrades proportionally to , instead of linearly in
as in the central model. Stronger group privacy yields improved max-information
guarantees, as well as stronger lower bounds (via "packing arguments"), over
the central model.
Building on a transformation of Bassily and Smith (STOC 2015), we
give a generic transformation from any non-interactive approximate-private
local protocol into a pure-private local protocol. Again in contrast with the
central model, this shows that we cannot obtain more accurate algorithms by
moving from pure to approximate local privacy
- âŠ