29 research outputs found
Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin
This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8920271&fileId=S1461145712000909Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5′-triphosphate. In particular, convergent lines of evidence have recently highlighted P2X4 receptors as a potentially critical target in the regulation of multiple nervous and behavioural functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X4 receptor in behavioural organization remains poorly investigated. To study the effects of P2X4 activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5–10 mg/kg i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviours in the tail-suspension and forced swim tests. The agent induced no significant behavioural changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by pre-pulse inhibition (PPI) of the acoustic startle reflex. In P2X4 knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X4 receptors may play a role in the regulation of sensorimotor gatin
Avermectins differentially affect ethanol intake and receptor function: implications for developing new therapeutics for alcohol use disorders
Abstract Our laboratory is investigating ivermectin (IVM) and other members of the avermectin family as new pharmacotherapeutics to prevent and/or treat alcohol use disorders (AUDs). Earlier work found that IVM significantly reduced ethanol intake in mice and that this effect likely reflects IVM's ability to modulate ligand-gated ion channels. We hypothesized that structural modifications that enhance IVM's effects on key receptors and/or increase its brain concentration should improve its anti-alcohol efficacy. We tested this hypothesis by comparing the abilities of IVM and two other avermectins, abamectin (ABM) and selamectin (SEL), to reduce ethanol intake in mice, to alter modulation of GABA A Rs and P2X 4 Rs expressed in Xenopus oocytes and to increase their ability to penetrate the brain. IVM and ABM significantly reduced ethanol intake and antagonized the inhibitory effects of ethanol on P2X 4 R function. In contrast, SEL did not affect either measure, despite achieving higher brain concentrations than IVM and ABM. All three potentiated GABA A R function. These findings suggest that chemical structure and effects on receptor function play key roles in the ability of avermectins to reduce ethanol intake and that these factors are more important than brain penetration alone. The direct relationship between the effect of these avermectins on P2X 4 R function and ethanol intake suggest that the ability to antagonize ethanol-mediated inhibition of P2X 4 R function may be a good predictor of the potential of an avermectin to reduce ethanol intake and support the use of avermectins as a platform for developing novel drugs to prevent and/or treat AUDs
Post-training ethanol disrupts trace conditioned fear in rats: Effects of timing of ethanol, dose and trace interval duration
Ethanol has complex effects on memory performance, although hippocampus-dependent memory may be especially vulnerable to disruption by acute ethanol intoxication occurring during or shortly after a training episode. In the present experiments, the effects of post-training ethanol on delay and trace fear conditioning were examined in adolescent rats. In Experiment 1, 30-day-old Sprague-Dawley rats were given delay or trace conditioning trials in which a 10 s flashing light CS was paired with a 0.5 mA shock US. For trace groups, the trace interval was 10 s. On days 31-33, animals were administered ethanol once daily (0.0 or 2.5 g/kg via intragastric intubation), and on day 34 animals were tested for CS-elicited freezing. Results showed that post-training ethanol affected the expression of trace, but had no effect on delay conditioned fear. Experiment 2 revealed that this effect was dose-dependent; doses lower than 2.5 g/kg were without effect. Experiment 3 evaluated whether proximity of ethanol to the time of training or testing was critical. Results show that ethanol administration beginning 24 h after training was more detrimental to trace conditioned freezing than administration that was delayed by 48 h. Finally, in Experiment 4 animals were trained with one of three different trace intervals: 1, 3 or 10 s. Results indicate that post-training administration of 2.5 g/kg ethanol disrupted trace conditioned fear in subjects trained with a 10 s, but not with a I or 3 s, trace interval. Collectively the results suggest that ethanol administration impairs post-acquisition memory processing of hippocampus-dependent trace fear conditioning. (C) 2008 Elsevier Inc. All rights reserved