8 research outputs found
Recommended from our members
SPT clusters with des and HST weak lensing. I. Cluster lensing and Bayesian population modeling of multiwavelength cluster datasets
We present a Bayesian population modeling method to analyze the abundance of galaxy clusters identified by the South Pole Telescope (SPT) with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). We discuss and validate the modeling choices with a particular focus on a robust, weak-lensing-based mass calibration using DES data. For the DES Year 3 data, we report a systematic uncertainty in weak-lensing mass calibration that increases from 1% at z=0.25 to 10% at z=0.95, to which we add 2% in quadrature to account for uncertainties in the impact of baryonic effects. We implement an analysis pipeline that joins the cluster abundance likelihood with a multiobservable likelihood for the Sunyaev-Zel'dovich effect, optical richness, and weak-lensing measurements for each individual cluster. We validate that our analysis pipeline can recover unbiased cosmological constraints by analyzing mocks that closely resemble the cluster sample extracted from the SPT-SZ, SPTpol ECS, and SPTpol 500d surveys and the DES Year 3 and HST-39 weak-lensing datasets. This work represents a crucial prerequisite for the subsequent cosmological analysis of the real dataset.</p
Recommended from our members
The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters
Context. Number counts of galaxy clusters across redshift are a powerful cosmological probe if a precise and accurate reconstruction of the underlying mass distribution is performed – a challenge called mass calibration. With the advent of wide and deep photometric surveys, weak gravitational lensing (WL) by clusters has become the method of choice for this measurement. Aims. We measured and validated the WL signature in the shape of galaxies observed in the first three years of the Dark Energy Survey (DES Y3) caused by galaxy clusters and groups selected in the first all-sky survey performed by SRG (Spectrum Roentgen Gamma)/eROSITA (eRASS1). These data were then used to determine the scaling between the X-ray photon count rate of the clusters and their halo mass and redshift. Methods. We empirically determined the degree of cluster member contamination in our background source sample. The individual cluster shear profiles were then analyzed with a Bayesian population model that self-consistently accounts for the lens sample selection and contamination and includes marginalization over a host of instrumental and astrophysical systematics. To quantify the accuracy of the mass extraction of that model, we performed mass measurements on mock cluster catalogs with realistic synthetic shear profiles. This allowed us to establish that hydrodynamical modeling uncertainties at low lens redshifts (z </p
Recommended from our members
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. II. Cross-correlation measurements and cosmological constraints
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the 2500 deg2 SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zel'dovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of ωm=0.272-0.052+0.032 and S8σ8ωm/0.3=0.736-0.028+0.032 (ωm=0.245-0.044+0.026 and S8=0.734-0.028+0.035) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find ωm=0.270-0.061+0.043 and S8=0.740-0.029+0.034. Our constraints on S8 are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck
Recommended from our members
Dark Energy Survey year 3 results: cosmology with moments of weak lensing mass maps
We present a cosmological analysis using the second and third moments of the weak lensing mass (convergence) maps from the first three years of data (Y3) data of the Dark Energy Survey. The survey spans an effective area of 4139 square degrees and uses the images of over 100 million galaxies to reconstruct the convergence field. The second moment of the convergence as a function of smoothing scale contains information similar to standard shear 2-point statistics. The third moment, or the skewness, contains additional non-Gaussian information. The data is analyzed in the context of the ΛCDM model, varying five cosmological parameters and 19 nuisance parameters modeling astrophysical and measurement systematics. Our modeling of the observables is completely analytical, and has been tested with simulations in our previous methodology study. We obtain a 1.7% measurement of the amplitude of fluctuations parameter S8σ8(ωm/0.3)0.5=0.784±0.013. The measurements are shown to be internally consistent across redshift bins, angular scales, and between second and third moments. In particular, the measured third moment is consistent with the expectation of gravitational clustering under the ΛCDM model. The addition of the third moment improves the constraints on S8 and ωm by ∼15% and ∼25% compared to an analysis that only uses second moments. We compare our results with Planck constraints from the cosmic microwave background, finding a 2.2-2.8σ tension in the full parameter space, depending on the combination of moments considered. The third moment, independently, is in 2.8σ tension with Planck, and thus provides a cross-check on the analyses of 2-point correlations
Recommended from our members
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zel'dovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on S8=σ8ωm/0.3 at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level
Recommended from our members
Dark Energy Survey Year 3 results: Constraints on extensions to ΛcDM with weak lensing and galaxy clustering
We constrain six possible extensions to the Λ cold dark matter (CDM) model using measurements from the Dark Energy Survey's first three years of observations, alone and in combination with external cosmological probes. The DES data are the two-point correlation functions of weak gravitational lensing, galaxy clustering, and their cross-correlation. We use simulated data vectors and blind analyses of real data to validate the robustness of our results to astrophysical and modeling systematic errors. In many cases, constraining power is limited by the absence of theoretical predictions beyond the linear regime that are reliable at our required precision. The ΛCDM extensions are dark energy with a time-dependent equation of state, nonzero spatial curvature, additional relativistic degrees of freedom, sterile neutrinos with eV-scale mass, modifications of gravitational physics, and a binned σ8(z) model which serves as a phenomenological probe of structure growth. For the time-varying dark energy equation of state evaluated at the pivot redshift we find (wp,wa)=(-0.99-0.17+0.28,-0.9±1.2) at 68% confidence with zp=0.24 from the DES measurements alone, and (wp,wa)=(-1.03-0.03+0.04,-0.4-0.3+0.4) with zp=0.21 for the combination of all data considered. Curvature constraints of ωk=0.0009±0.0017 and effective relativistic species Neff=3.10-0.16+0.15 are dominated by external data, though adding DES information to external low-redshift probes tightens the ωk constraints that can be made without cosmic microwave background observables by 20%. For massive sterile neutrinos, DES combined with external data improves the upper bound on the mass meff by a factor of 3 compared to previous analyses, giving 95% limits of (ΔNeff,meff)≤(0.28,0.20 eV) when using priors matching a comparable Planck analysis. For modified gravity, we constrain changes to the lensing and Poisson equations controlled by functions ς(k,z)=ς0ωΛ(z)/ωΛ,0 and μ(k,z)=μ0ωΛ(z)/ωΛ,0, respectively, to ς0=0.6-0.5+0.4 from DES alone and (ς0,μ0)=(0.04±0.05,0.08-0.19+0.21) for the combination of all data, both at 68% confidence. Overall, we find no significant evidence for physics beyond ΛCDM
Recommended from our members
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints
We present cosmological constraints from the analysis of two-point correlation functions between galaxy positions and galaxy lensing measured in Dark Energy Survey (DES) Year 3 data and measurements of cosmic microwave background (CMB) lensing from the South Pole Telescope (SPT) and Planck. When jointly analyzing the DES-only two-point functions and the DES cross-correlations with SPT+Planck CMB lensing, we find ωm=0.344±0.030 and S8σ8(ωm/0.3)0.5=0.773±0.016, assuming ΛCDM. When additionally combining with measurements of the CMB lensing autospectrum, we find ωm=0.306-0.021+0.018 and S8=0.792±0.012. The high signal-to-noise of the CMB lensing cross-correlations enables several powerful consistency tests of these results, including comparisons with constraints derived from cross-correlations only, and comparisons designed to test the robustness of the galaxy lensing and clustering measurements from DES. Applying these tests to our measurements, we find no evidence of significant biases in the baseline cosmological constraints from the DES-only analyses or from the joint analyses with CMB lensing cross-correlations. However, the CMB lensing cross-correlations suggest possible problems with the correlation function measurements using alternative lens galaxy samples, in particular the redmagic galaxies and high-redshift maglim galaxies, consistent with the findings of previous studies. We use the CMB lensing cross-correlations to identify directions for further investigating these problems
Recommended from our members
The Dark Energy Survey: Cosmology Results with ∼1500 New High-redshift Type Ia Supernovae Using the Full 5 yr Data Set
We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 < z < 0.10. Using SN data alone and including systematic uncertainties, we find ΩM = 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q
0 < 0 in ΛCDM) with over 5σ confidence. We find
(
Ω
M
,
w
)
=
(
0.264
−
0.096
+
0.074
,
−
0.80
−
0.16
+
0.14
)
in flat wCDM. For flat w
0
w
a
CDM, we find
(
Ω
M
,
w
0
,
w
a
)
=
(
0.495
−
0.043
+
0.033
,
−
0.36
−
0.30
+
0.36
,
−
8.8
−
4.5
+
3.7
)
, consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM, w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.</p