789 research outputs found

    Exact Scale Invariance of Composite-Field Coupling Constants

    Full text link
    We show that the coupling constant of a quantum-induced composite field is scale invariant due to its compositeness condition. It is first demonstrated in next-to-leading order in 1/N in typical models, and then we argue that it holds exactly.Comment: 4 page

    On the stability of thick brane worlds non-minimally coupled to gravity

    Full text link
    We analyze a class of 5D models where a 3 brane is generated by a bulk scalar field non minimally coupled to gravity. We show that perturbative stability of such branes is normally guaranteed although non minimal couplings are not innocuous in general. After the physical states are identified the linearized equations for propagating modes are evaluated into a Schroedinger form and supersymmetric quantum mechanics provides the absence of tachyons. The spectrum contains a tower of spin 2 and spin 0 fields with continuous masses starting from zero ones. For regular geometries the scalar spectrum contains a state with zero mass which is always non normalizable. The propagating massive scalar states are repelled off the brane due to a centrifugal potential.Comment: 15 page

    Kink-induced symmetry breaking patterns in brane-world SU(3)^3 trinification models

    Full text link
    The trinification grand unified theory (GUT) has gauge group SU(3)^3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multi-parameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed ``clash of symmetries'' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to colour cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries.Comment: 12 pages, RevTex, references adde

    Mass gap for gravity localized on Weyl thick branes

    Full text link
    We study the properties of a previously found family of thick brane configurations in a pure geometric Weyl integrable 5D space time, a non-Riemannian generalization of Kaluza-Klein (KK) theory involving a geometric scalar field. Thus the 5D theory describes gravity coupled to a self-interacting scalar field which gives rise to the structure of the thick branes. Analyzing the graviton spectrum for this class of models, we find that a particularly interesting situation arises for a special case in which the 4D graviton is separated from the KK gravitons by a mass gap. The corresponding effective Schroedinger equation has a modified Poeschl-Teller potential and can be solved exactly. Apart from the massless 4D graviton, it contains one massive KK bound state, and the continuum spectrum of delocalized KK modes. We discuss the mass hierarchy problem, and explicitly compute the corrections to Newton's law in the thin brane limit.Comment: 6 pages in Revtex, no figures, journal version, significately revised and extende

    Radion stabilization from the vacuum on flat extra dimensions

    Full text link
    Volume stabilization in models with flat extra dimension could follow from vacuum energy residing in the bulk when translational invariance is spontaneously broken. We study a simple toy model that exemplifies this mechanism which considers a massive scalar field with non trivial boundary conditions at the end points of the compact space, and includes contributions from brane and bulk cosmological constants. We perform our analysis in the conformal frame where the radion field, associated with volume variations, is defined, and present a general strategy for building stabilization potentials out of those ingredients. We also provide working examples for the interval and the Tn/Z2T^n/Z_2 orbifold configuration.Comment: Comments and clarifications added throughout the text. Typos corrected and references added. Final version, 27 pages, five figures include

    Supersymmetric K field theories and defect structures

    Full text link
    We construct supersymmetric K field theories (i.e., theories with a non-standard kinetic term) in 1+1 and 2+1 dimensions such that the bosonic sector just consists of a nonstandard kinetic term plus a potential. Further, we study the possibility of topological defect formation in these supersymmetric models. Finally, we consider more general supersymmetric K field theories where, again, topological defects exist in some cases.Comment: Latex, 6 figures, 27 page

    Fermion Resonances on a Thick Brane with a Piecewise Warp Factor

    Full text link
    In this paper, we mainly investigate the problems of resonances of massive KK fermions on a single scalar constructed thick brane with a piecewise warp factor matching smoothly. The distance between two boundaries and the other parameters are determined by one free parameter through three junction conditions. For the generalized Yukawa coupling ηΨˉϕkΨ\eta\bar{\Psi}\phi^{k}\Psi with odd k=1,3,5,...k=1,3,5,..., the mass eigenvalue mm, width Γ\Gamma, lifetime τ\tau, and maximal probability PmaxP_{max} of fermion resonances are obtained. Our numerical calculations show that the brane without internal structure also favors the appearance of resonant states for both left- and right-handed fermions. The scalar-fermion coupling and the thickness of the brane influence the resonant behaviors of the massive KK fermions.Comment: V3: 15 pages, 7 figures, published versio

    Zeta Functions in Brane World Cosmology

    Full text link
    We present a calculation of the zeta function and of the functional determinant for a Laplace-type differential operator, corresponding to a scalar field in a higher dimensional de Sitter brane background, which consists of a higher dimensional anti-de Sitter bulk spacetime bounded by a de Sitter section, representing a brane. Contrary to the existing examples, which all make use of conformal transformations, we evaluate the zeta function working directly with the higher dimensional wave operator. We also consider a generic mass term and coupling to curvature, generalizing previous results. The massless, conformally coupled case is obtained as a limit of the general result and compared with known calculations. In the limit of large anti-de Sitter radius, the zeta determinant for the ball is recovered in perfect agreement with known expressions, providing an interesting check of our result and an alternative way of obtaining the ball determinant.Comment: 14 pages, 1 figur

    Charged Rotating Black Holes on a 3-Brane

    Full text link
    We study exact stationary and axisymmetric solutions describing charged rotating black holes localized on a 3-brane in the Randall-Sundrum braneworld. The charges of the black holes are considered to be of two types, the first being an induced tidal charge that appears as an imprint of nonlocal gravitational effects from the bulk space and the second is a usual electric charge arising due to a Maxwell field trapped on the brane. We assume a special ansatz for the metric on the brane taking it to be of the Kerr-Schild form and show that the Kerr-Newman solution of ordinary general relativity in which the electric charge is superceded by a tidal charge satisfies a closed system of the effective gravitational field equations on the brane. It turns out that the negative tidal charge may provide a mechanism for spinning up the black hole so that its rotation parameter exceeds its mass. This is not allowed in the framework of general relativity. We also find a new solution that represents a rotating black hole on the brane carrying both charges. We show that for a rapid enough rotation the combined influence of the rotational dynamics and the local bulk effects of the "squared" energy momentum tensor on the brane distort the horizon structure of the black hole in such a way that it can be thought of as composed of non-uniformly rotating null circles with growing radii from the equatorial plane to the poles. We finally study the geodesic motion of test particles in the equatorial plane of a rotating black hole with tidal charge. We show that the effects of negative tidal charge tend to increase the horizon radius, as well as the radii of the limiting photon orbit, the innermost bound and the innermost stable circular orbits for both direct and retrograde motions of the particles.Comment: RevTeX 4, 33 pages, 4 figures, new references adde

    Metastable gravity on classical defects

    Full text link
    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the Dominant Energy Condition for codimension Nc = 2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension Nc > 2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasi-localized gravity.Comment: 10 pages, 3 figures, uses RevTeX, typos corrected, matches published versio
    corecore