8,089 research outputs found
A survey of the UK benefit system
This paper describes all the main benefits in the UK system, giving details of rates and allowances, as well as numbers and types of claimants and levels of expenditure
The Kinematics of Kepler's Supernova Remnant as revealed by Chandra
I determine the expansion of the supernova remnant of SN1604 (Kepler's
supernova) based on archival Chandra ACIS-S observations made in 2000 and 2006.
The measurements were done in several distinct energy bands, and were made for
the remnant as a whole, and for six individual sectors. The average expansion
parameter indicates that the remnant expands as , but there
are significant differences in different parts of the remnant: the bright
northwestern part expands as , whereas the rest of the
remnant's expansion shows an expansion . The latter is
consistent with an explosion in which the outer part of the ejecta has a
negative power law slope for density () of , or with
an exponential density profile(). The expansion
parameter in the southern region, in conjunction with the shock radius,
indicate a rather low value (<5E50 erg) for the explosion energy of SN1604 for
a distance of 4 kpc. An higher explosion energy is consistent with the results,
if the distance is larger.
The filament in the eastern part of the remnant, which is dominated by X-ray
synchrotron radiation seems to mark a region with a fast shock speed , corresponding to a shock velocity of v= 4200 km/s, for a distance to
SN1604 of 4 kpc. This is consistent with the idea that X-ray synchrotron
emission requires shock velocities in excess of ~2000 km/s.
The X-ray based expansion measurements reported are consistent with results
based on optical and radio measurements, but disagree with previous X-ray
measurements based on ROSAT and Einstein observations.Comment: Accepted for publication in ApJ. This new version is the accepted
version, which differs mainly in the discussion sectio
Evolution of Magnetic Fields in Supernova Remnants
Supernova remnants (SNR) are now widely believed to be a source of cosmic
rays (CRs) up to an energy of 1 PeV. The magnetic fields required to accelerate
CRs to sufficiently high energies need to be much higher than can result from
compression of the circumstellar medium (CSM) by a factor 4, as is the case in
strong shocks. Non-thermal synchrotron maps of these regions indicate that
indeed the magnetic field is much stronger, and for young SNRs has a dominant
radial component while for old SNRs it is mainly toroidal. How these magnetic
fields get enhanced, or why the field orientation is mainly radial for young
remnants, is not yet fully understood. We use an adaptive mesh refinement MHD
code, AMRVAC, to simulate the evolution of supernova remnants and to see if we
can reproduce a mainly radial magnetic field in early stages of evolution. We
follow the evolution of the SNR with three different configurations of the
initial magnetic field in the CSM: an initially mainly toroidal field, a
turbulent magnetic field, and a field parallel to the symmetry axis. Although
for the latter two topologies a significant radial field component arises at
the contact discontinuity due to the Rayleigh-Taylor instability, no radial
component can be seen out to the forward shock. Ideal MHD appears not
sufficient to explain observations. Possibly a higher compression ratio and
additional turbulence due to dominant presence of CRs can help us to better
reproduce the observations in future studies.Comment: 5 pages, 3 figures. To appear in conference proceedings of "Magnetic
Fields in the Universe II" (2008), RevMexA
Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants
An overview is given of multiwavelength observations of young supernova
remnants, with a focus on the observational signatures of efficient cosmic ray
acceleration. Some of the effects that may be attributed to efficient cosmic
ray acceleration are the radial magnetic fields in young supernova remnants,
magnetic field amplification as determined with X-ray imaging spectroscopy,
evidence for large post-shock compression factors, and low plasma temperatures,
as measured with high resolution optical/UV/X-ray spectroscopy. Special
emphasis is given to spectroscopy of post-shock plasma's, which offers an
opportunity to directly measure the post-shock temperature. In the presence of
efficient cosmic ray acceleration the post-shock temperatures are expected to
be lower than according to standard equations for a strong shock. For a number
of supernova remnants this seems indeed to be the case.Comment: Invited review, to appear in the proceedings of "4th Heidelberg
International Symposium on High Energy Gamma-Ray Astronomy 2008
The loss-limited electron energy in SN 1006: effects of the shock velocity and of the diffusion process
The spectral shape of the synchrotron X-ray emission from SN 1006 reveals the
fundamental role played by radiative losses in shaping the high-energy tail of
the electron spectrum. We analyze data from the XMM-Newton SN 1006 Large
Program and confirm that in both nonthermal limbs the loss-limited model
correctly describes the observed spectra. We study the physical origin of the
observed variations of the synchrotron cutoff energy across the shell. We
investigate the role played by the shock velocity and by the electron
gyrofactor. We found that the cutoff energy of the syncrotron X-ray emission
reaches its maximum value in regions where the shock has experienced its
highest average speed. This result is consistent with the loss-limited
framework. We also find that the electron acceleration in both nonthermal limbs
of SN 1006 proceeds close to the Bohm diffusion limit, the gyrofactor being in
the range 1.5-4. We finally investigate possible explanations for the low
values of cutoff energy measured in thermal limbs.Comment: Accepted for publication in Astronomische Nachrichten. Proceedings of
the XMM-Newton Science Workshop 201
Modeling the interaction of thermonuclear supernova remnants with circumstellar structures: The case of Tycho's supernova remnant
The well-established Type Ia remnant of Tycho's supernova (SN 1572) reveals
discrepant ambient medium density estimates based on either the measured
dynamics or on the X-ray emission properties. This discrepancy can potentially
be solved by assuming that the supernova remnant (SNR) shock initially moved
through a stellar wind bubble, but is currently evolving in the uniform
interstellar medium with a relatively low density.
We investigate this scenario by combining hydrodynamical simulations of the
wind-loss phase and the supernova remnant evolution with a coupled X-ray
emission model, which includes non-equilibrium ionization. For the explosion
models we use the well-known W7 deflagration model and the delayed detonation
model that was previously shown to provide good fits to the X-ray emission of
Tycho's SNR.
Our simulations confirm that a uniform ambient density cannot simultaneously
reproduce the dynamical and X-ray emission properties of Tycho. In contrast,
models that considered that the remnant was evolving in a dense, but small,
wind bubble reproduce reasonably well both the measured X-ray emission spectrum
and the expansion parameter of Tycho's SNR. Finally, we discuss possible mass
loss scenarios in the context of single- and double-degenerate models which
possible could form such a small dense wind bubble.Comment: 12 pages, 7 figures, accepted for publication in MNRA
Simulation and theory of fluid demixing and interfacial tension of mixtures of colloids and non-ideal polymers
An extension of the Asakura-Oosawa-Vrij model of hard sphere colloids and
non-adsorbing polymers, that takes polymer non-ideality into account through a
repulsive stepfunction pair potential between polymers, is studied with grand
canonical Monte Carlo simulations and density functional theory. Simulation
results validate previous theoretical findings for the shift of the bulk fluid
demixing binodal upon increasing strength of polymer-polymer repulsion,
promoting the tendency to mix. For increasing strength of the polymer-polymer
repulsion, simulation and theory consistently predict the interfacial tension
of the free colloidal liquid-gas interface to decrease significantly for fixed
colloid density difference in the coexisting phases, and to increase for fixed
polymer reservoir packing fraction.Comment: 10 pages, 4 figure
Revealing the obscured supernova remnant Kes 32 with Chandra
I report here on the analysis and interpretation of a Chandra observation of
the supernova remnant Kes 32. Kes 32 is rather weak in X-rays due to a large
interstellar absorption, which is found to be ~4E22 cm^-2, larger than
previously reported. Spectral analysis indicates that the ionization age of
this object is very young, with n_e t ~ 4E9 cm^-3s, and a temperature of kT_e ~
1 keV. The X-ray emission peaks at a smaller radius than in the radio. The low
ionization age suggests that Kes 32 is a young remnant. However, a young age is
in contradiction with the relatively large apparent size, which indicates an
age of several thousand years, instead of a few hundred years. This problem is
discussed in connection with Kes 32's unknown distance and its possible
association with the Norma galactic arm.Comment: Accepted for publication in the Astrophysical Journal. 7 pages, 7
figure
- …
