190 research outputs found

    Braiding Majorana corner modes in a second-order topological superconductor

    Full text link
    We propose the concept of a device based on a square-shaped sample of a two-dimensional second-order topological helical superconductor which hosts two zero-dimensional Majorana quasiparticles at the corners. The two zero-energy modes rely on particle-hole symmetry (PHS) and their spacial position can be shifted by rotating an in-plane magnetic field and tuning proximity-induced spin-singlet pairing. We consider an adiabatic cycle performed on the degenerate ground-state manifold and show that it realizes the braiding of the two modes whereby they accumulate a non-trivial statistical phase π\pi within one cycle. Alongside with the PHS-ensured operator algebra, the fractional statistics confirms the Majorana nature of the zero-energy excitations. A schematic design for a possible experimental implementation of such a device is presented, which could be a step towards realizing non-Abelian braiding.Comment: A different physical system is considered in this version (topological superconductor), however, the topological and symmetry features are closely related to those of the two-layer topological insulator of version 2 (arXiv:1904.07822v2). A more accurate distinction is made between the fractional statistics of the Majorana corner states and their potential non-Abelian propertie

    Non-Abelian band topology in noninteracting metals

    Full text link
    Electron energy bands of crystalline solids generically exhibit degeneracies called band-structure nodes. Here, we introduce non-Abelian topological charges that characterize line nodes inside the momentum space of crystalline metals with space-time inversion (pt) symmetry and with weak spin-orbit coupling. We show that these are quaternion charges, similar to those describing disclinations in biaxial nematics. Starting from two-band considerations, we develop the complete many-band description of nodes in the presence of (pt) and mirror symmetries, which allows us to investigate the topological stability of nodal chains in metals. The non-Abelian charges put strict constraints on the possible nodal-line configurations. Our analysis goes beyond the standard approach to band topology and implies the existence of one-dimensional topological phases not present in existing classifications
    • …
    corecore