8 research outputs found

    BİODİZELİN OKSİTLENME KARARLILIĞI ÜZERİNE DENEYSEL BİR ARAŞTIRMA

    No full text
    Biodizel, dizel motorları için hayvansal ve bitkisel yağlar gibi yenilenebilir kaynaklardan üretilen alternatif bir dizel yakıtıdır. Bitkisel ve hayvani yağlar, alkil mono esteri üretmek için bir alkol ile reaksiyona sokulur ve elde edilen ester, motor üzerinde hemen hemen hiç değişiklik yapılmadan kullanılabilir. Biodizel, yüksek oranlı doymamış yağlardan üretildiğinde, dizel yakıtından çok daha hızlı bir şekilde oksitlenir. Bu çalışmada, biodizelin hızlandırılmış oksitlenme test sonuçları sunulmuştur. Bu testler, zamanın, oksijen akış oranının, sıcaklığın, metallerin ve farklı biodizel hammaddelerinin, oksitlenme üzerine etkisini göstermektedir. Ayrıca üretilen biodizeller, motorinle karışım oluşturularak ve antioksidanlar ilave edilerek de incelenmiştir. Deneysel çalışmaların sonucu, normal dizel motor sıcaklıklarında antioksidan içermeyen biodizelin çok daha çabuk bir şekilde oksitlendiğini göstermektedir. Bu oksitlenme işleminde, peroksit, asit ve viskozite değerlerinde artış gözlemlenmiştir. Peroksit yaklaşık 350 meq O2/kg değerine ulaştıktan sonra sabit kalmakta, asit ve viskozite değeri ise periyodik olarak artmaktadır

    AN EXPERIMENTAL INVESTIGATION ON OXIDATIVE STABILITY OF BIODIESEL

    No full text
    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feed stocks such as vegetable oil and animal fats. These feed stocks are reacted with an alcohol to produce alkyl monoesters. The obtained ester can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This paper reports the results of accelerated oxidation tests on biodiesel. These tests show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are also explored. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq O2/kg, the acid value and viscosity increase monotonically as oxidation proceeds

    Alternative Composite Design from recycled aluminium (AA7075) chips for knuckle applications-II

    No full text
    In this work, an alternative aluminium matrix composite (AMCs) was designed from the recycled chips of the aluminium series of AA7075 (90 wt %) and Al-Zn-Mg-Si-Ni (10 wt %) given by French aeronautic company to prepare a typical matrix after that we have designed a composite through combined method of powder metallurgy followed by Sintering + Forging. Basically, B2O3 (4 wt %, 8 wt %), TiC (5 wt %), fine Al2O3 Fibre (5 wt %), Zn (4 wt %) and Nb2Al (4 wt %) were added as the main reinforcements. To increase wettability of the reinforcements, we doped them through a thermomechanical treatment. The main idea of this research is to propose an alternative low cost composite for the application in a mechanism to transfer motion for the connection links, for example; between the two railways wagons etc. and also some connecting link in aeronautical pieces as an alternative replacement for conventional alloys used in this area. Mechanical properties, static compression 3-Point Bending (3PB) and dynamic drop weight tests and also micro-hardness results of these composites have been carried out. The microstructure analyses were evaluated by Scanning Electron Microscope (SEM)

    The Purification and Characterization of a Cutinase-like Enzyme with Activity on Polyethylene Terephthalate (PET) from a Newly Isolated Bacterium Stenotrophomonas maltophilia PRS8 at a Mesophilic Temperature

    No full text
    A polyethylene terephthalate (PET)-degrading bacterium identified as Stenotrophomonas maltophilia PRS8 was isolated from the soil of a landfill. The degradation of the PET bottle flakes and the PET prepared as a powder were assessed using live cells, an extracellular medium, or a purified cutinase-like enzyme. These treated polymers were analyzed using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The depolymerization products, identified using HPLC and LC-MS, were terephthalic acid (TPA), mono(2-hydroxyethyl)-TPA (MHET), and bis(2-hydroxyethyl)-TPA (BHET). Several physicochemical factors were optimized for a better cutinase-like enzyme production by using unique single-factor and multi-factor statistical models (the Plackett–Burman design and the central composite design software). The enzyme was purified for homogeneity through column chromatography using Sephadex G-100 resin. The molecular weight of the enzyme was approximately 58 kDa. The specific activity on para nitrophenyl butyrate was estimated at 450.58 U/mg, with a purification of 6.39 times and a yield of 48.64%. The enzyme was stable at various temperatures (30–40 °C) and pH levels (8.0–10.0). The enzyme activity was significantly improved by the surfactants (Triton X-100 and Tween-40), organic solvent (formaldehyde), and metals (NiCl2 and Na2SO4). The extracellular medium containing the cutinase-type enzyme showed a depolymerization yield of the PET powder comparable to that of Idonella skaiensis IsPETase and significantly higher than that of Humicola insolens thermostable HiCut (HiC) cutinase. This study suggests that S. maltophilia PRS8 is able to degrade PET at a mesophilic temperature and could be further explored for the sustainable management of plastic waste
    corecore