1 research outputs found
The role of spin-orbit effects in the mobility of N+ ions moving in a helium gas at low temperature
The mobility of N+ ions in ground-state helium gas at very low temperature is examined with explicit inclusion of spin–orbit coupling effects. The ionic kinetics is treated theoretically with the three-temperature model. The N+–He interaction potentials, including spin–orbit coupling, are determined using high-level ab initio calculations. Then, the classical and quantal transport cross sections, both needed in the computation of the mobility coefficients, are calculated in terms of the collisional energy of the N+–He system. The numerical results, at temperature 4.3 K, show the spin–orbit interactions have negligible effect on the mobility coefficients