3,737 research outputs found
Report on the Alternative Platform Observer Program in North Carolina: March 2006 to March 2007
In February 2006, an Alternative Platform Observer Program (APP) was implemented in North Carolina (NC) to observe commercial gillnet trips by small vessels [<24 ft (7.2 m)] in nearshore waters out to three nm (5.6 km). Efforts began with outreach to the fishing industry while simultaneously gathering information to be incorporated in a Database of Fishermen. From 30 March 2006 through 31 March 2007, 36 trips were observed. Observed trips of the NC nearshore gillnet fishery targeted seven species: kingfish (Menticirrhus spp.), Spanish mackerel (Scomberomorus maculatus), spiny dogfish (Squalus acanthias), spot (Leiostomus xanthurus), spotted seatrout (Cynoscion nebulosus), striped bass (Morone saxatilis), and weakfish (Cynoscion regalis). Of the 36 trips, 20 (55.6%) were with vessels that were new to the Northeast Fisheries Observer Program (NEFOP), having never carried an observer. Based on the landings data for small vessels from North Carolina Division of Marine Fisheries (NCDMF), the APP has achieved 10.1% coverage by number of trips and 4.0% by pounds landed. No incidental takes of bottlenose dolphins were observed by the APP, although bottlenose dolphins were sighted during 19 (52.8%) observed trips. The APP has drastically increased the number of observed trips of small vessels in the nearshore waters of NC. When combined with trips observed by NEFOP (n=205), the APP resulted in a 15.6% increase in the number of observed gillnet trips. (PDF contains 34 pages
Combined Error Correction Techniques for Quantum Computing Architectures
Proposals for quantum computing devices are many and varied. They each have
unique noise processes that make none of them fully reliable at this time.
There are several error correction/avoidance techniques which are valuable for
reducing or eliminating errors, but not one, alone, will serve as a panacea.
One must therefore take advantage of the strength of each of these techniques
so that we may extend the coherence times of the quantum systems and create
more reliable computing devices. To this end we give a general strategy for
using dynamical decoupling operations on encoded subspaces. These encodings may
be of any form; of particular importance are decoherence-free subspaces and
quantum error correction codes. We then give means for empirically determining
an appropriate set of dynamical decoupling operations for a given experiment.
Using these techniques, we then propose a comprehensive encoding solution to
many of the problems of quantum computing proposals which use exchange-type
interactions. This uses a decoherence-free subspace and an efficient set of
dynamical decoupling operations. It also addresses the problems of
controllability in solid state quantum dot devices.Comment: Contribution to Proceedings of the 2002 Physics of Quantum
Electronics Conference", to be published in J. Mod. Optics. This paper
provides a summary and review of quant-ph/0205156 and quant-ph/0112054, and
some new result
Implications of Qudit Superselection rules for the Theory of Decoherence-free Subsystems
The use of d-state systems, or qudits, in quantum information processing is
discussed. Three-state and higher dimensional quantum systems are known to have
very different properties from two-state systems, i.e., qubits. In particular
there exist qudit states which are not equivalent under local unitary
transformations unless a selection rule is violated. This observation is shown
to be an important factor in the theory of decoherence-free, or noiseless,
subsystems. Experimentally observable consequences and methods for
distinguishing these states are also provided, including the explicit
construction of new decoherence-free or noiseless subsystems from qutrits.
Implications for simulating quantum systems with quantum systems are also
discussed.Comment: 13 pages, 1 figures, Version 2: Typos corrected, references fixed and
new ones added, also includes referees suggested changes and a new exampl
Overview of Quantum Error Prevention and Leakage Elimination
Quantum error prevention strategies will be required to produce a scalable
quantum computing device and are of central importance in this regard. Progress
in this area has been quite rapid in the past few years. In order to provide an
overview of the achievements in this area, we discuss the three major classes
of error prevention strategies, the abilities of these methods and the
shortcomings. We then discuss the combinations of these strategies which have
recently been proposed in the literature. Finally we present recent results in
reducing errors on encoded subspaces using decoupling controls. We show how to
generally remove mixing of an encoded subspace with external states (termed
leakage errors) using decoupling controls. Such controls are known as ``leakage
elimination operations'' or ``LEOs.''Comment: 8 pages, no figures, submitted to the proceedings of the Physics of
Quantum Electronics, 200
Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator
Mechanical clocks consist of a pendulum and a clockwork that translates the
pendulum period to displayed time. The most advanced clocks utilize optical
transitions in atoms in place of the pendulum and an optical frequency comb
generated by a femtosecond laser as the clockwork. The comb must be stabilized
at two points along its frequency spectrum: one with a laser to lock a comb
line to a transition in the atom, and another through self referencing to
stabilize the frequency interval between the comb lines. This approach requires
advanced techniques, so optical atomic clocks are currently laboratory devices
in specialized labs. In this paper we leverage unique properties of Kerr comb
oscillators for realization of optical atomic clocks in miniature form factors.
In particular, we describe a clock based on D1 transition of 87Rb that fits in
the palm of the hand, and can be further miniaturized to chip scale.Comment: 4 pages, 4 figure
A Parametrization of Bipartite Systems Based on SU(4) Euler Angles
In this paper we give an explicit parametrization for all two qubit density
matrices. This is important for calculations involving entanglement and many
other types of quantum information processing. To accomplish this we present a
generalized Euler angle parametrization for SU(4) and all possible two qubit
density matrices. The important group-theoretical properties of such a
description are then manifest. We thus obtain the correct Haar (Hurwitz)
measure and volume element for SU(4) which follows from this parametrization.
In addition, we study the role of this parametrization in the Peres-Horodecki
criteria for separability and its corresponding usefulness in calculating
entangled two qubit states as represented through the parametrization.Comment: 23 pages, no figures; changed title and abstract and rewrote certain
areas in line with referee comments. To be published in J. Phys. A: Math. and
Ge
- …