61,331 research outputs found

    U-duality (sub-)groups and their topology

    Full text link
    We discuss some consequences of the fact that symmetry groups appearing in compactified (super-)gravity may be non-simply connected. The possibility to add fermions to a theory results in a simple criterion to decide whether a 3-dimensional coset sigma model can be interpreted as a dimensional reduction of a higher dimensional theory. Similar criteria exist for higher dimensional sigma models, though less decisive. Careful examination of the topology of symmetry groups rules out certain proposals for M-theory symmetries, which are not ruled out at the level of the algebra's. We conclude with an observation on the relation between the ``generalized holonomy'' proposal, and the actual symmetry groups resulting from E_10 and E_11 conjectures.Comment: LaTeX, 8 pages, 2 tables, 1 figure, uses IOP-style files. Contributed to the proceedings of the RTN-workshop ``The quantum structure of space-time and the geometrical nature of the fundamental interactions,'', Copenhagen, Denmark, september 200

    Chiral Dynamics and Heavy Quark Symmetry in a Toy Field Theoretic Model

    Full text link
    We study a solvable QCD--like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity doubled heavy--light meson system, corresponding to a (0−,1−)(0^-,1^-) multiplet and a (0+,1+)(0^+,1^+) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger--Treiman relation and gAg_A is found to be small. The Isgur--Wise function, Ο(w)\xi(w), the decay constant, fBf_B, and other observables are studied.Comment: 42 pages, SSCL-PP-243; Fermi-Pub-93/059-

    The role of the outer boundary condition in accretion disk models: theory and application

    Full text link
    The influence of the outer boundary condition (OBC) on the dynamics and radiation of optically thin accretion flow is investigated. Bremsstrahlung and synchrotron radiations amplified by Comptonization are taken into account and two-temperature plasma assumption is adopted. The three OBCs we adopted are the temperatures of the electrons and ions and the specific angular momentum of the accretion flow at a certain outer boundary. We find that when the general parameters such as the mass accretion rate and the viscous parameter are fixed, the peak flux at various bands such as radio, IR and X-ray, can differ by as large as several orders of magnitude under different OBCs in our example. Our results indicate that OBC is both dynamically and radiatively important therefore should be regarded as a new ``parameter'' in accretion disk models. We apply the above results to the compact radio source Sgr A* and find that the discrepancy between the mass accretion rate favored by ADAF models in the literature and that favored by the three dimensional hydrodynamical simulation can be naturally resolved by seriously considering the outer boundary condition of the accretion flow.Comment: 23 pages, 9 figures,accepted by the Astrophysical Journa

    On some differential-geometric aspects of the Torelli map

    Get PDF
    In this note we survey recent results on the extrinsic geometry of the Jacobian locus inside Ag\mathsf{A}_g. We describe the second fundamental form of the Torelli map as a multiplication map, recall the relation between totally geodesic subvarieties and Hodge loci and survey various results related to totally geodesic subvarieties and the Jacobian locus.Comment: To appear on Boll. UMI, special volume in memory of Paolo de Bartolomei

    The effects of a magnetic barrier and a nonmagnetic spacer in tunnel structures

    Full text link
    The spin-polarized transport is investigated in a new type of magnetic tunnel junction which consists of two ferromagnetic electrodes separated by a magnetic barrier and a nonmagnetic metallic spacer. Based on the transfer matrix method and the nearly-free-electron-approximation the dependence of the tunnel magnetoresistance (TMR) and electron-spin polarization on the nonmagnetic layer thickness and the applied bias voltage are studied theoretically. The TMR and spin polarization show an oscillatory behavior as a function of the spacer thickness and the bias voltage. The oscillations originate from the quantum well states in the spacer, while the existence of the magnetic barrier gives rise to a strong spin polarization and high values of the TMR. Our results may be useful for the development of spin electronic devices based on coherent transport.Comment: 15 pages, 5 figure

    Is attending a mental process?

    Get PDF
    The nature of attention has been the topic of a lively research programme in psychology for over a century. But there is widespread agreement that none of the theories on offer manage to fully capture the nature of attention. Recently, philosophers have become interested in the debate again after a prolonged period of neglect. This paper contributes to the project of explaining the nature of attention. It starts off by critically examining Christopher Mole’s prominent “adverbial” account of attention, which traces the failure of extant psychological theories to their assumption that attending is a kind of process. It then defends an alternative, process-based view of the metaphysics of attention, on which attention is understood as an activity and not, as psychologists seem to implicitly assume, an accomplishment. The entrenched distinction between accomplishments and activities is shown to shed new light on the metaphysics of attention. It also provides a novel diagnosis of the empirical state of play

    Phase Transformation in Tantalum under Extreme Laser Deformation

    Get PDF
    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear).Fil: Lu, C. H.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Maddox, B. R.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados Unido

    Dual formulation of classical W-algebras

    Full text link
    By extending the concept of \mc, I introduce a dual formulation of (classical) nonlinear extensions of the \vir\ algebra. This dual formulation is closely related to three dimensional actions which are analogous to a \cs\ action. I present an explicit construction in terms of superfields of the N=2N=2 super \wfour.Comment: (only change is an added reference), 9 pages, USC--92/01

    Surface effects on nanowire transport: numerical investigation using the Boltzmann equation

    Full text link
    A direct numerical solution of the steady-state Boltzmann equation in a cylindrical geometry is reported. Finite-size effects are investigated in large semiconducting nanowires using the relaxation-time approximation. A nanowire is modelled as a combination of an interior with local transport parameters identical to those in the bulk, and a finite surface region across whose width the carrier density decays radially to zero. The roughness of the surface is incorporated by using lower relaxation-times there than in the interior. An argument supported by our numerical results challenges a commonly used zero-width parametrization of the surface layer. In the non-degenerate limit, appropriate for moderately doped semiconductors, a finite surface width model does produce a positive longitudinal magneto-conductance, in agreement with existing theory. However, the effect is seen to be quite small (a few per cent) for realistic values of the wire parameters even at the highest practical magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure
    • 

    corecore