9 research outputs found

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    Long-term Monitoring on Mrk 501 for Its VHE gamma Emission and a Flare in October 2011

    Get PDF
    As one of the brightest active blazars in both X-ray and very high energy Îł\gamma-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for Îł\gamma-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest Îł\gamma-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 σ\sigma is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the Îł\gamma-ray flux above 1 TeV by a factor of 6.6±\pm2.2 from its steady emission. In particular, the Îł\gamma-ray flux above 8 TeV is detected with a significance better than 4 σ\sigma. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of Îł\gamma-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and Îł\gamma-rays are also investigated.Comment: have been accepted for publication at Ap

    Sequence and expression pattern of the Drosophila melanogaster mitochondrial porin gene: evidence of a conserved protein domain between fly and mouse

    No full text
    We have recently cloned a cDNA encoding mitochondrial porin in Drosophila melanogaster and shown its chromosomal localization (Messina et al., FEBS Lett. (1996) 384, 9-13). Such cDNA was used as a probe for screening a genomic library. We thus cloned and sequenced a 4494-bp genomic region which contained the whole gene for the mitochondrial porin or VDAC. It was found that this D. melanogaster porin gene contains five exons, numbered IA (115 bp), IB (123 bp), II (320 bp), III (228 bp) and IV (752 bp). The exons II, III and IV contain the protein coding sequence and the 3' untranslated sequence (3'-UTR). The first base in exon II precisely corresponds to the first base of the starting ATG codon. Exon IA corresponds to the 5'-UTR sequence reported in the published cDNA sequence. Exon IB corresponds to an alternative 5'-UTR sequence, demonstrated to be transcribed by 5'-RACE experiments. The exon-intron splicing borders and the length of the exon III perfectly match a homologous internal exon detected in the mouse genes. Such exon encodes a protein domain predicted by sequence transmembrane arrangement models to contain major hydrophilic loops and it is thus suspected to have a conserved distinct function. In situ hybridization experiments confirmed the localization of the genomic clone on the chromosome 2L at region 32B3-4. Together with genomic Southern blotting at various stringencies, the same experiment did not confirm the presence of a second genetic locus on D. melanogaster chromosomes. Northern blots demonstrated that the porin gene is a housekeeping one: three messages of approx. 1.2-1.6 kbp are transcribed in every fly developmental stage that was studied. They were shown to derive by an alternative usage of different promoters and polyadenylation sites

    OBSERVATION OF TeV GAMMA RAYS FROM THE UNIDENTIFIED SOURCE HESS J1841−055 WITH THE ARGO-YBJ EXPERIMENT

    No full text
    We report the observation of a very high energy Îł -ray source whose position is coincident with HESS J1841−055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from 2007 November to 2012 July. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function, we estimate an extension σ = (0.40+0.32 −0.22)◩, which is consistent with the HESS measurement. The observed energy spectrum is dN/dE = (9.0 ± 1.6) × 10−13(E/5 TeV)−2.32±0.23 photons cm−2 s−1 TeV−1, in the energy range 0.9–50 TeV. The integral Îł -ray flux above 1 TeV is 1.3 ± 0.4 Crab, which is 3.2 ± 1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ and possible counterparts at other wavelengths are discussed
    corecore