28 research outputs found

    Search for the rare decay D-0 -> mu(+) mu(-)

    No full text
    A search for the rare decay D-0 -> mu(+) mu(-) is performed using a data sample, corresponding to an integrated luminosity of 0.9 fb(-1), of pp collisions collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The observed number of events is consistent with the background expectations and corresponds to an upper limit of B(D-0 -> mu(+) mu(-)) < 6.2 (7.6) x 10(-9) at 90% (95%) confidence level. This result represents an improvement of more than a factor twenty with respect to previous measurements

    Observation of the decay B-s(0) -> (D)over-bar(0)phi

    No full text
    First observation of the decay B-s(0) -> (D) over bar (0)phi is reported using pp collision data, corresponding to an integrated luminosity of 1.0 fb(-1), collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. The significance of the signal is 6.5 standard deviations. The branching fraction is measured relative to that of the decay B-S(0) -> (D) over bar (0)phi to be beta B-S(0) -> (D) over bar (0)phi/beta B-S(0) -> (D) over bar (0)(K) over bar*(0) = 0.069 +/- 0.013 (stat) +/- 0.007 (syst). The first measurement of the ratio of branching fractions for the decays beta B-S(0) -> (D) over bar (0)(K) over bar*(0) and beta B-S(0) -> (D) over bar (0)(K) over bar*(0) is found to be beta B-S(0) -> (D) over bar (0)(K) over bar*(0/)beta B-S(0) -> (D) over bar (0)(K) over bar*(0=7.8) +/- 0.7(stat) +/- 0.3 (syst) +/- 0.6 (f(s)/f(d)) where the last uncertainty is due to the ratio of the B(s)(0)and B-0 fragmentation fractions

    Search for the decay D-0 -> pi(+)pi(-)mu(+)mu(-)

    No full text
    A search for the D-0 -> pi(+)pi(-)mu(+)mu(-) decay, where the muon pair does not originate from a resonance, is performed using proton-proton collision data corresponding to an integrated luminosity of 1.0 fb(-1) recorded by the LHCb experiment at a centre-of-mass energy of 7 TeV. No signal is observed and an upper limit on the relative branching fraction with respect to the resonant decay mode D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-)), under the assumption of a phase-space model, is found to be B(D-0 -> pi(+)pi(-)mu(+)mu(-))/B(D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-))) pi(+)pi(-)mu(+)mu(-)) < 5.5 x 10(-7) at 90% confidence level. This is the most stringent to date

    First measurement of time-dependent CP violation in Bs0→K+K− B_s^0\to K^+K^- decays

    No full text
    Direct and mixing-induced CP-violating asymmetries in B-s(0) -> K+K- decays are measured for the first time using a data sample of p p collisions, corresponding to an integrated luminosity of 1.0 fb(-1), collected with the LHCb detector at a centre-of-mass energy of 7 TeV. The results are C-KK = 0.14 +/- 0.11 +/- 0.03 and S-KK = 0.30 +/- 0.12 +/- 0.04, where the first uncertainties are statistical and the second systematic. The corresponding quantities are also determined for B-0 -> pi(+)pi(-) decays to be C-pi pi = -0.38 +/- 0.15 +/- 0.02 and S-pi pi = -0.71 +/- 0.13 +/- 0.02, in good agreement with existing measurements

    Measurement of the flavour-specific CP-violating asymmetry a(sl)(s) in B-s(0) decays

    No full text
    The CP-violating asymmetry a(sl)(s), is studied using semileptonic decays of B-s(0) and (B) over bar (0)(s) mesons produced in pp collisions at a centre-of-mass energy of 7 TeV at the LHC, exploiting a data sample corresponding to an integrated luminosity of 1.0 fb(-1). The reconstructed final states are D-s(+/-)mu(+/-)(s), with the D-s(+/-) particle decaying in the phi pi(+/-) mode. The D-s(+/-)mu(+/-)(s) yields are summed over B-s(0) and (B) over bar (0)(s) initial states, and integrated with respect to decay time. Data-driven methods are used to measure efficiency ratios. We obtain a(sl)(s) = (-0.06 +/- 0.50 +/- 0.36)%, where the first uncertainty is statistical and the second systematic

    B flavour tagging using charm decays at the LHCb experiment

    No full text
    An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+ -> J/psi K+ and B-0 -> J/psi K*(0) using 3.0fb(-1) of data collected by the LHCb experiment at pp centre-of-mass energies of 7TeV and 8TeV. Its tagging power on these samples of B -> J/psi X decays is (0.30 +/- 0.01 +/- 0.01) %

    Model-independent search for CP violation in D-0 > K-K+pi(-)pi(+) and D-0 -> pi(-)pi(+)pi(+)pi(-) decays

    No full text
    A search for CP violation in the phase-space structures of 130 and 15 decays to the final states K-K+pi(-)pi(+) and pi(-)pi(+)pi(+)pi(-) is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb(-1) collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K-K+pi(-)pi(+) final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the pi(-)pi(+)pi(+)pi(-). final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Identification of beauty and charm quark jets at LHCb

    No full text
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured

    Measurement of the CP-violating phase beta in B-0 -> J/psi pi(+)pi(-) decays and limits on penguin effects

    No full text
    Time-dependent CP violation is measured in the (B-0) over bar -> J/psi pi(+)pi(-) p-channel for each pi(+)pi(-) resonant final state using data collected with an integrated luminosity of 3.0 fb(-1) in pp collisions using the LHCb detector. The final state with the largest rate, J/psi rho(0)(770), is used to measure the CP-violating angle 2 beta(eff) to be (41.7 +/- 9.6(-6.3)(+2.8)).. This result can be used to limit the size of penguin amplitude contributions to CPviolation measurements in, for example, (B-0) over bar -> J/psi pi(+)pi(-) decays. Assuming approximate SU(3) flavour symmetry and neglecting higher order diagrams, the shift in the CP-violating phase phi(s) limited to be within the interval [-1.05 degrees, + 1.18 degrees] at 95% confidence level. Changes to the limit due to SU(3) symmetry breaking effects are also discussed. (C) 2015 The Authors. Published by Elsevier B.V

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    No full text
    A search for the rare decays B-s(0) -> pi(+) pi-mu(+) mu-and B-0 -> pi(+) pi-mu(+) mu-is performed in a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3GeV/c(2) and with muon pairs that do not originate from a resonance are considered. The first observation of the decay B-s(0) -> pi(+) pi-mu(+) mu- and the first evidence of the decay B-0 -> pi(+) pi-mu(+) mu-are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(B-s(0) -> pi(+) pi-mu(+) mu(-)) =(8.6 +/- 1.5(stat) +/- 0.7(syst) +/- 0.7 (norm)) x 10(-8) and B(B-0 -> pi(+) pi-mu(+) mu(-)) =(2.11 +/- 0.51(stat) +/- 0.15(syst) +/- 0.16(norm)) x10(-8), where the third uncertainty is due to the branching fraction of the decay B-0. -> J/Psi(mu(+) mu(-)) K*(892)(0)(-> K+ pi(-)), used as a normalisation. (C) 2015 The Authors. Published by Elsevier B.V
    corecore