15 research outputs found

    Effective lifetime measurements in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays

    No full text
    Measurements of the effective lifetimes in the B-s(0) -> K+K-, B-0 -> K+pi(-) and B-s(0) -> pi K-+(-) decays are presented using 1.0 fb(-1)of pp collision data collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The analysis uses a data-driven approach to correct for the decay time acceptance. The measured effective lifetimes are tau(Bs0 -> K+K-) = 1.407 +/- 0.016 (stat) +/- 0.007 (syst) ps, tau(Bs0 -> K+pi-) = 1.524 +/- 0.011 (stat) +/- 0.004 (syst) ps, tau(Bs0 ->pi+K-) = 1.60 +/- 0.06 (stat) +/- 0.01 (syst) ps. This is the most precise determination to date of the effective lifetime in the B-s(0) -> K+K- decay and provides constraints on contributions from physics beyond the Standard Model to the B-s(0) mixing phase and the width difference Delta Gamma(s). (C) 2014 The Authors. Published by Elsevier B.V

    Determination of gamma and-2 beta(s) from charmless two-body decays of beauty mesons

    No full text
    Using the latest LHCb measurements of time-dependent CP violation in the B-s(0) -> K+K- decay, a U-spin relation between the decay amplitudes of B-s(0) -> K+K- and B-0 -> p(+)p(-) decay processes allows constraints to be placed on the angle gamma of the unitarity triangle and on the B-s(0) mixing phase -2 beta(s). Results from an extended approach, which uses additional inputs on B-0 -> pi(0)pi(0) and B+ -> pi(+)pi(0) decays from other experiments and exploits isospin symmetry, are also presented. The dependence of the results on the maximum allowed amount of U-spin breaking is studied. At 68% probability, the value gamma =( 63.5(-6.7)(+7.2))degrees modulo 180 degrees is determined. In an alternative analysis, the value -2 beta(s)= - 0.12(-0.16)(+ 0.14) rad is found. In both measurements, the uncertainties due to U-spin breaking effects up to 50% are included. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/)

    Measurement of the lifetime of the B-c(+) meson using the B-c(+) -> J/psi pi(+) decay mode

    No full text
    The difference in total widths between the B-c(+) and B+ mesons is measured using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy proton-proton collisions at the LHC. Through the study of the time evolution of B-c(+) -> J/psi pi(+) and B+ -> J/psi K+ decays, the width difference is measured to be Delta Gamma = Gamma(Bc+) - Gamma(Bc+) = 4.46 +/- 0.14 +/- 0.07 mm(-1) c, where the first uncertainty is statistical and the second systematic. The known lifetime of the B+ meson is used to convert this to a precise measurement of the B-c(+) clifetime, tau(Bc+) = 513.4 +/- 11.0 +/- 5.7 fs, where the first uncertainty is statistical and the second is systematic. (C) 2015 The Authors. Published by Elsevier B.V

    Precision measurement of the ratio of the Lambda(0)(b) to (B)over-bar(0) lifetimes

    No full text
    The LHCb measurement of the lifetime ratio of the Lambda(0)(b) baryon to the (B) over bar (0) meson is updated using data corresponding to an integrated luminosity of 3.0 fb(-1) collected using 7 and 8 TeV centre-of-mass energy pp collisions at the LHC. The decay modes used are Lambda(0)(b) -> J/psi pK(-) and (B) over bar (0) -> J/psi pi K-+(-), where the pi K-+(-) mass is consistent with that of the (K) over bar*(0)(892) meson. The lifetime ratio is determined with unprecedented precision to be 0.974 +/- 0.006 +/- 0.004, where the first uncertainty is statistical and the second systematic. This result is in agreement with original theoretical predictions based on the heavy quark expansion. Using the current world average of the (B) over bar (0) lifetime, the Lambda(0)(b) lifetime is found to be 1.479 +/- 0.009 +/- 0.010 ps. (C) 2014 The Authors. Published by Elsevier B.V

    Observation of the decay B-s(0) -> (D)over-bar(0)phi

    No full text
    First observation of the decay B-s(0) -> (D) over bar (0)phi is reported using pp collision data, corresponding to an integrated luminosity of 1.0 fb(-1), collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. The significance of the signal is 6.5 standard deviations. The branching fraction is measured relative to that of the decay B-S(0) -> (D) over bar (0)phi to be beta B-S(0) -> (D) over bar (0)phi/beta B-S(0) -> (D) over bar (0)(K) over bar*(0) = 0.069 +/- 0.013 (stat) +/- 0.007 (syst). The first measurement of the ratio of branching fractions for the decays beta B-S(0) -> (D) over bar (0)(K) over bar*(0) and beta B-S(0) -> (D) over bar (0)(K) over bar*(0) is found to be beta B-S(0) -> (D) over bar (0)(K) over bar*(0/)beta B-S(0) -> (D) over bar (0)(K) over bar*(0=7.8) +/- 0.7(stat) +/- 0.3 (syst) +/- 0.6 (f(s)/f(d)) where the last uncertainty is due to the ratio of the B(s)(0)and B-0 fragmentation fractions

    Model-independent search for CP violation in D-0 > K-K+pi(-)pi(+) and D-0 -> pi(-)pi(+)pi(+)pi(-) decays

    No full text
    A search for CP violation in the phase-space structures of 130 and 15 decays to the final states K-K+pi(-)pi(+) and pi(-)pi(+)pi(+)pi(-) is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb(-1) collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K-K+pi(-)pi(+) final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the pi(-)pi(+)pi(+)pi(-). final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    No full text
    A first study of CP violation in the decay modes B-+/- -> [(KSK +/-)-K-0 pi(-/+)](D)h(+/-) and B-+/- -> [(KSK +/-)-K-0 pi(-/+)](D)h(+/-), where h labels a K or pi meson and D labels a D-0 or (D) over bar (0) meson, is performed. The analysis uses the LHCb data set collected in pp collisions, corresponding to an integrated luminosity of 3 fb(-1). The analysis is sensitive to the CP-violating CKM phase gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of gamma using other decay modes. (C) 2014 The Authors. Published by Elsevier B.V

    LHCb detector performance

    No full text
    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region

    Precision luminosity measurements at LHCb

    No full text
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy root s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for root s = 2.76, 7 and 8TeV (proton-proton collisions) and for root s(NN) = 5TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at root s = 8TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Evidence for the decay X(3872) -> psi(2S)gamma

    No full text
    Evidence for the decay mode X(3872) -> psi(2S)gamma in B+ -> X(3872)K+ decays is found with a significance of 4.4 standard deviations. The analysis is based on a data sample of proton proton collisions, corresponding to an integrated luminosity of 3 fb(-1), collected with the LHCb detector, at centre-of-mass energies of 7 and 8 TeV. The ratio of the branching fraction of the X(3872) -> psi(2S)gamma decay to that of the X(3872) -> J/psi gamma decay is measured to be B(X(3872) -> psi(2S)gamma)/B(X(3872) -> J/psi gamma) = 2.46 +/- 0.64 +/- 0.29, where the first uncertainty is statistical and the second is systematic. The measured value does not support a pure D (D) over bar* molecular interpretation of the X(3872) state. (C) 2014 CERN for the benefit of the LHCb Collaboration. Published by Elsevier B.V
    corecore