35 research outputs found

    Clinical and biological predictors of response to standardised paediatric colitis therapy (PROTECT): a multicentre inception cohort study

    No full text
    © 2019 Elsevier Ltd Background: Lack of evidence-based outcomes data leads to uncertainty in developing treatment regimens in children who are newly diagnosed with ulcerative colitis. We hypothesised that pretreatment clinical, transcriptomic, and microbial factors predict disease course. Methods: In this inception cohort study, we recruited paediatric patients aged 4–17 years with newly diagnosed ulcerative colitis from 29 centres in the USA and Canada. Patients initially received standardised mesalazine or corticosteroids, with pre-established criteria for escalation to immunomodulators (ie, thiopurines) or anti-tumor necrosis factor-α (TNFα) therapy. We used RNA sequencing to define rectal gene expression before treatment, and 16S sequencing to characterise rectal and faecal microbiota. The primary outcome was week 52 corticosteroid-free remission with no therapy beyond mesalazine. We assessed factors associated with the primary outcome using logistic regression models of the per-protocol population. This study is registered with ClinicalTrials.gov, number NCT01536535. Findings: Between July 10, 2012, and April 21, 2015, of 467 patients recruited, 428 started medical therapy, of whom 400 (93%) were evaluable at 52 weeks and 386 (90%) completed the study period with no protocol violations. 150 (38%) of 400 participants achieved week 52 corticosteroid-free remission, of whom 147 (98%) were taking mesalazine and three (2%) were taking no medication. 74 (19%) of 400 were escalated to immunomodulators alone, 123 (31%) anti-TNFα therapy, and 25 (6%) colectomy. Low baseline clinical severity, high baseline haemoglobin, and week 4 clinical remission were associated with achieving week 52 corticosteroid-free remission (n=386, logistic model area under the curve [AUC] 0·70, 95% CI 0·65–0·75; specificity 77%, 95% CI 71–82). Baseline severity and remission by week 4 were validated in an independent cohort of 274 paediatric patients with newly diagnosed ulcerative colitis. After adjusting for clinical predictors, an antimicrobial peptide gene signature (odds ratio [OR] 0·57, 95% CI 0·39–0·81; p=0·002) and abundance of Ruminococcaceae (OR 1·43, 1·02–2·00; p=0·04), and Sutterella (OR 0·81, 0·65–1·00; p=0·05) were independently associated with week 52 corticosteroid-free remission. Interpretation: Our findings support the utility of initial clinical activity and treatment response by 4 weeks to predict week 52 corticosteroid-free remission with mesalazine alone in children who are newly diagnosed with ulcerative colitis. The development of personalised clinical and biological signatures holds the promise of informing ulcerative colitis therapeutic decisions. Funding: US National Institutes of Health

    Identification of beauty and charm quark jets at LHCb

    No full text
    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured

    B flavour tagging using charm decays at the LHCb experiment

    No full text
    An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+ -> J/psi K+ and B-0 -> J/psi K*(0) using 3.0fb(-1) of data collected by the LHCb experiment at pp centre-of-mass energies of 7TeV and 8TeV. Its tagging power on these samples of B -> J/psi X decays is (0.30 +/- 0.01 +/- 0.01) %

    LHCb detector performance

    No full text
    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region

    Search for the decay D-0 -> pi(+)pi(-)mu(+)mu(-)

    No full text
    A search for the D-0 -> pi(+)pi(-)mu(+)mu(-) decay, where the muon pair does not originate from a resonance, is performed using proton-proton collision data corresponding to an integrated luminosity of 1.0 fb(-1) recorded by the LHCb experiment at a centre-of-mass energy of 7 TeV. No signal is observed and an upper limit on the relative branching fraction with respect to the resonant decay mode D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-)), under the assumption of a phase-space model, is found to be B(D-0 -> pi(+)pi(-)mu(+)mu(-))/B(D-0 -> pi(+)pi(-)phi(-> mu(+)mu(-))) pi(+)pi(-)mu(+)mu(-)) < 5.5 x 10(-7) at 90% confidence level. This is the most stringent to date

    Precision luminosity measurements at LHCb

    No full text
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy root s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for root s = 2.76, 7 and 8TeV (proton-proton collisions) and for root s(NN) = 5TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at root s = 8TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider

    Observation of the B0→ρ0ρ0 decay from an amplitude analysis of B0→(π+π−)(π+π−) decays

    No full text
    Proton-proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb(-1), are analysed to search for the charmless B-0 -> rho(0)rho(0) decay. More than 600 B-0 -> (pi(+)pi(-))(pi(+)pi(-)) signal decays are selected and used to perform an amplitude, analysis, under the assumption of no CP violation in the decay, from which the B-0 -> rho(0)rho(0) decay is observed for the first time with 7.1 standard deviations significance. The fraction of B-0 -> rho(0)rho(0) decays yielding a longitudinally polarised final state is measured to be f(L) = 0.745(-0.058)(+0.048)(stat) +/- 0.034(syst). The B-0 -> rho(0)rho(0) branching fraction, using the B-0 -> phi K*(892)(0) decay as reference, is also reported as B(B-0 -> rho(0)rho(0)) = (0.94 +/- 0.17(stat) +/- 0.09(syst) +/- 0.06(BF)) x 10(-6). (C) 2015 CERN for the benefit of the LHCb Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Observation of the decay (B)over-bar(s)(0) -> psi(2S)K+pi(-)

    No full text
    The decay (B) over bar (0)(s) -> psi(2S)K+pi(-) is observed using a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV. The branching fraction relative to the B-0 -> psi(2S)K+pi(-) decay mode is measured to be B((B) over bar (0)(s) -> psi(2S)K+pi(-))/B(B-0 -> psi(2S)K+pi(-)) = 5.38 +/- 0.36 (stat) +/- 0.22 (syst) +/- 0.31 (f(s)/f(d)) %, where f(s)/f(d) indicates the uncertainty due to the ratio of probabilities for a b quark to hadronise into a B-s(0) or B-0 meson. Using an amplitude analysis, the fraction of decays proceeding via an intermediate K*(892)(0) meson is measured to be 0.645 +/- 0.049 (stat) +/- 0.049 (syst) and its longitudinal polarisation fraction is 0.524 +/- 0.056 (stat) +/- 0.029 (syst). The relative branching fraction for this component is determined to be B((B) over bar (0)(s) -> psi(2S)K*(892)(0))/B(B-0 -> psi(2S)K*(892)(0)) = 5.58 +/- 0.57 (stat) +/- 0.40 (syst) +/- 0.32 (f(s)/f(d)) %. In addition, the mass splitting between the B-s(0) and B-0 mesons is measured as M(B-s(0)) - M(B-0) = 87.45 +/- 0.44 (stat) +/- 0.09 (syst) MeV/c(2). (C) 2015 CERN for the benefit of the LHCb Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the (B)over-bar(0)-B-0 and (B)over-bars(0)-B-s(0) production asymmetries in pp collisions at root s=7 TeV

    No full text
    The (B) over bar (0)-B-0 and (B) over bar (0)(s)-B-s(0) production asymmetries, A(P)(B-0) and A(P)(B-s(0)), are measured by means of a time-dependent analysis of B-0 -> J/Psi K-*0, B-0 -> D-pi(+) and B-s(0) -> D-s(-)pi(+) decays, using a data sample corresponding to an integrated luminosity of 1.0 fb(-1), collected by LHCb in pp collisions at a centre-of-mass energy of 7 TeV. The measurements are performed as a function of transverse momentum and pseudorapidity of the B-0 and B-s(0) mesons within the LHCb acceptance. The production asymmetries, integrated over p(T) and eta in the range 4 < p(T) < 30 GeV/c and 2.5 < eta < 4.5, are determined to be A(P)(B-0) = (-0.35 +/- 0.76 +/- 0.28)% and A(P)(B-s(0)) = (1.09 +/- 2.61 +/- 0.66)%, where the first uncertainties are statistical and the second systematic. (C) 2014 The Authors. Published by Elsevier B.V
    corecore