1,804 research outputs found

    Crystal structures of angiotensin-converting enzyme from Anopheles gambiae in its native form and with a bound inhibitor

    Get PDF
    The mosquitoes of the Anopheles and Aedes genus are some of the most deadly insects to humans because of their effectiveness as vectors of malaria and a range of arboviruses, including yellow fever, dengue, chikungunya, West Nile and Zika. The use of insecticides from different chemical classes is a key component of the integrated strategy against An. gambiae and Ae. aegypti, but the problem of insecticide resistance means that new compounds with different modes of action are urgently needed to replace chemicals that fail to control resistant mosquito populations. We have previously shown that feeding inhibitors of peptidyl dipeptidase A to both An. gambiae and Ae. aegypti mosquito larvae lead to stunted growth and mortality. However, these compounds were designed to inhibit the mammalian form of the enzyme (angiotensin-converting enzyme, ACE) and hence can have lower potency and lack selectivity as inhibitors of the insect peptidase. Thus, for the development of inhibitors of practical value in killing mosquito larvae, it is important to design new compounds that are both potent and highly selective. Here, we report the first structures of AnoACE2 from An. gambiae in its native form and with a bound human ACE inhibitor fosinoprilat. A comparison of these structures with human ACE (sACE) and an insect ACE homologue from Drosophila melanogaster (AnCE) revealed that the AnoACE2 structure is more similar to AnCE. In addition, important elements that differ in these structures provide information that could potentially be utilised in the design of chemical leads for selective mosquitocide development

    Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from Saccharophagus degradans 2-40

    Get PDF
    Many agarolytic bacteria degrade agar polysaccharide into the disaccharide unit neoagarobiose [O-3,6-anhydro-α-L-galactopyranosyl-(1→3)-D-galactose] using various β-agarases. Neoagarobiose hydrolase is an enzyme that acts on the α-1,3 linkage in neoagarobiose to yield D-galactose and 3,6-anhydro-L-galactose. This activity is essential in both the metabolism of agar by agarolytic bacteria and the production of fermentable sugars from agar biomass for bioenergy production. Neoagarobiose hydrolase from the marine bacterium Saccharophagus degradans 2-40 was overexpressed in Escherichia coli and crystallized in the monoclinic space group C2, with unit-cell parameters a = 129.83, b = 76.81, c = 90.11 Å, β = 101.86°. The crystals diffracted to 1.98 Å resolution and possibly contains two molecules in the asymmetric unit

    Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulator

    Get PDF
    Certain bacteria are able to conserve energy via the reductive dehalogenation of halo-organic compounds in a respiration-type metabolism. The transcriptional regulator CprK from Desulfitobacterium spp. induces expression of halorespiratory genes upon binding of o-chlorophenol ligands and is reversibly inactivated by oxygen through disulphide bond formation. We report crystal structures of D. hafniense CprK in the ligand-free (both oxidation states), ligand-bound (reduced) and DNA-bound states, making it the first member of the widespread CRP-FNR superfamily for which a complete structural description of both redox-dependent and allosteric molecular rearrangements is available. In conjunction with kinetic and thermodynamic ligand binding studies, we provide a model for the allosteric mechanisms underpinning transcriptional control. Amino acids that play a key role in this mechanism are not conserved in functionally distinct CRP-FNR members. This suggests that, despite significant structural homology, distinct allosteric mechanisms are used, enabling this protein family to control a very wide range of processes

    Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulator

    Get PDF
    Certain bacteria are able to conserve energy via the reductive dehalogenation of halo-organic compounds in a respiration-type metabolism. The transcriptional regulator CprK from Desulfitobacterium spp. induces expression of halorespiratory genes upon binding of o-chlorophenol ligands and is reversibly inactivated by oxygen through disulphide bond formation. We report crystal structures of D. hafniense CprK in the ligand-free (both oxidation states), ligand-bound (reduced) and DNA-bound states, making it the first member of the widespread CRP-FNR superfamily for which a complete structural description of both redox-dependent and allosteric molecular rearrangements is available. In conjunction with kinetic and thermodynamic ligand binding studies, we provide a model for the allosteric mechanisms underpinning transcriptional control. Amino acids that play a key role in this mechanism are not conserved in functionally distinct CRP-FNR members. This suggests that, despite significant structural homology, distinct allosteric mechanisms are used, enabling this protein family to control a very wide range of processes

    The evolution of an allosteric site in phosphorylase

    Get PDF
    AbstractBackground: Glycogen phosphorylases consist of a conserved catalytic core onto which different regulatory sites are added. By comparing the structures of isozymes, we hope to understand the structural principles of allosteric regulation in this family of enzymes. Here, we focus on the differences in the glucose 6-phosphate (Glc-6-P) binding sites of two isozymes.Results We have refined the structure of Glc-6-P inhibited yeast phosphorylase b to 2.6 å and compared it with known structures of muscle phosphorylase. Glc-6-P binds in a novel way, interacting with a distinct set of secondary elements. Structural links connecting the Glc-6-P binding sites and catalytic sites are conserved, although the specific contacts are not.Conclusion Our comparison reveals that the Glc-6-P binding site was modified over the course of evolution from yeast to vertebrates to become a bi-functional switch. The additional ability of muscle phosphorylase to be activated by AMP required the recruitment of structural elements into the binding site and sequence changes to create a binding subsite for adenine, whilst maintaining links to the catalytic site

    Crystallization and preliminary X-ray analysis of mycophenolic acid-resistant and mycophenolic acid-sensitive forms of IMP dehydrogenase from the human fungal pathogen Cryptococcus

    Get PDF
    Fungal human pathogens such as Cryptococcus neoformans are becoming an increasingly prevalent cause of human morbidity and mortality owing to the increasing numbers of susceptible individuals. The few antimycotics available to combat these pathogens usually target fungal-specific cell-wall or membrane-related components; however, the number of these targets is limited. In the search for new targets and lead compounds, C. neoformans has been found to be susceptible to mycophenolic acid through its target inosine monophosphate dehydrogenase (IMPDH); in contrast, a rare subtype of the related C. gattii is naturally resistant. Here, the expression, purification, crystallization and preliminary crystallographic analysis of IMPDH complexed with IMP and NAD+ is reported for both of these Cryptococcus species. The crystals of IMPDH from both sources had the symmetry of the tetragonal space group I422 and diffracted to a resolution of 2.5 A for C. neoformans and 2.6 A for C. gattii

    Purification, crystallization and preliminary X-ray analysis of a deletion mutant of a major buckwheat allergen

    Get PDF
    A 16 kDa buckwheat protein (BWp16) is a major allergen responsible for immediate hypersensitivity reactions including anaphylaxis. An immunologically active mutant of BWp16 was prepared and a three-wavelength MAD data set was collected from a crystal of selenomethionine-labelled mutant protein

    Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate

    Get PDF
    Hen egg-white lysozyme (HEWL) was the first enzyme to have its three-dimensional structure determined by X-ray diffraction techniques(1). A catalytic mechanism, featuring a long-lived oxo-carbenium-ion intermediate, was proposed on the basis of model-building studies(2). The `Phillips' mechanism is widely held as the paradigm for the catalytic mechanism of beta -glycosidases that cleave glycosidic linkages with net retention of configuration of the anomeric centre. Studies with other retaining beta -glycosidases, however, provide strong evidence pointing to a common mechanism for these enzymes that involves a covalent glycosyl-enzyme intermediate, as previously postulated(3). Here we show, in three different cases using electrospray ionization mass spectrometry, a catalytically competent covalent glycosyl-enzyme intermediate during the catalytic cycle of HEWL. We also show the three-dimensional structure of this intermediate as determined by Xray diffraction. We formulate a general catalytic mechanism for all retaining beta -glycosidases that includes substrate distortion, formation of a covalent intermediate, and the electrophilic migration of C1 along the reaction coordinate

    Three-dimensional Structure of L-2-Haloacid Dehalogenase from Xanthobacter autotrophicus GJ10 Complexed with the Substrate-analogue Formate

    Get PDF
    The L-2-haloacid dehalogenase from the 1,2-dichloroethane degrading bacterium Xanthobacter autotrophicus GJ10 catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoic acids to yield the corresponding D-2-hydroxyalkanoic acids. Its crystal structure was solved by the method of multiple isomorphous replacement with incorporation of anomalous scattering information and solvent flattening, and was refined at 1.95-Å resolution to an R factor of 21.3%. The three-dimensional structure is similar to that of the homologous L-2-haloacid dehalogenase from Pseudomonas sp. YL (1), but the X. autotrophicus enzyme has an extra dimerization domain, an active site cavity that is completely shielded from the solvent, and a different orientation of several catalytically important amino acid residues. Moreover, under the conditions used, a formate ion is bound in the active site. The position of this substrate-analogue provides valuable information on the reaction mechanism and explains the limited substrate specificity of the Xanthobacter L-2-haloacid dehalogenase.

    Chemical probing suggests redox-regulation of the carbonic anhydrase activity of mycobacterial Rv1284

    Get PDF
    The mycobacterial enzyme Rv1284 is a member of the ߭carbonic anhydrase family that is considered essential for survival of the pathogen. The active site cavity of this dimeric protein is characterized by an exceptionally small volume and harbours a catalytic zinc ion coordinated by two cysteine and one histidine residue side chains. Using the natural products polycarpine and emodin as chemical probes in crystallographic experiments and stopped-flow enzyme assays, we report that the catalytic activity can be reversibly inhibited by oxidation. Oxidative conditions lead to the removal of one of the active site cysteine residues from the coordination sphere of the catalytic metal ion by engagement in a disulfide bond with another cysteine residue close by. The subsequent loss of the metal ion, which is supported by crystallographic analysis, may thus render the protein catalytically inactive. The oxidative inhibition of Rv1284 can be reversed by exposing the protein to reducing conditions. Because the physical size of the chemical probes used in the present study substantially exceeds the active site volume, we hypothesized that these compounds exert their effects from a surface-bound location and identified Tyr120 as a critical residue for oxidative inactivation. These findings link conditions of oxidative stress to pH homeostasis of the pathogen. Because oxidative stress and acidification are defence mechanisms employed by the innate immune system of the host, we suggest that Rv1284 may be a component of the mycobacterial survival strategy.Griffith Sciences, Griffith Institute for Drug DiscoveryFull Tex
    corecore